Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
C1 :
a) Xét tam giác ABC có BC2=AB2+AC2( Định lý Py-ta-go)
Thay số:BC2=62+82
BC2=36+64=100
=>BC=10(cm)
b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2
Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có:
Bi chung, góc ABI= góc HBI ( cmt)
=> tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn)
c)Gọi giao của AH và BI là K
Vì tam giác ABI=tam giác HBI (cmt)=> AB=HB( 2 cạnh tương ứng)
Xét tam giác AKB và tam giác HKB có:
AB=HB (cmt)
góc ABK=góc HBK(cmt)
BK chung
=. tam giác AKB= tam giác HKB ( c.g.c)
=> KB=KH ( 2 cạnh tương ứng)
=> K là trung điểm của BH (1)
Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK hay AH vuông góc với BI(2)
Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH
C2 :
a)ÁP DỤNG ĐỊNH LÝ PYTAGO THUẬN TRÒG TAM GIÁC ABC (BAC = 90 ĐỘ ) CÓ :
AB2 +AC2=BC2
=>52+72=BC2
=>BC2=25+49=74
HAY BC = CĂN BẬC HAI 74 =8.6 (CM)
b)XÉT HAI TAM GIÁC ABE (BAE = 90 ĐỘ ) VÀ TAM GIÁC DBE (BDE=90 ĐỘ ) CÓ :
AB=BD (GT)
BE LÀ CẠNH HUYỀN CHUNG
=>TAM GIÁC ABE = TAM GIÁC DBE (CẠNH HUYỀN _CẠNH GÓC VUÔNG )
C ) DO TAM GIÁC ABE = TAM GIÁC DBE (CÂU B )
=>AE=DE (2 CẠNH TƯƠNG ỨNG )
XÉT HAI TAM GIÁC AEF (EAF = 90 ĐỘ ) VÀ TAM GIÁC DEC (EDC = 90 ĐỘ ) CÓ :
E1 =E2
AE=DE (CMT)
=>TAM GIÁC AEF=TAM GIÁC DEC (CGV _ GÓC NHỌN KỀ )
=>ÈF=EC (2 CẠNH TƯƠNG ỨNG)
a, ΔABD có BA = BD (gt) và ˆABDABD^ = ˆABCABC^ = 60o60o
⇒ ΔABD đều (đpcm)
b, ΔABD đều ⇒ AB = AD
Xét ΔAHB và ΔAHD có:
AH chung; AB = AD (cmt); HB = HD (H là trung điểm của BD)
⇒ ΔAHB = ΔAHD (c.c.c)
⇒ ˆAHBAHB^ = ˆAHDAHD^ mà 2 góc này kề bù
⇒ ˆAHBAHB^ = ˆAHDAHD^ = 90o90o
⇒ AH ⊥ BD (đpcm)
c, ΔABD đều ⇒ AB = BD = AD = 2cm
⇒ HB = HD = 1cm
⇒ HC = BC - HB = 5 - 1 = 4cm
ΔAHB vuông tại H ⇒ AH = √AB2−HB2AB2−HB2 = √22−1222−12 = √33cm
ΔAHC vuông tại H ⇒ AC = √AH2+HC2AH2+HC2 = √3+423+42 = √1919cm
a) Xét ΔBAD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Xét ΔBAD cân tại B có \(\widehat{ABD}=60^0\)(gt)
nên ΔBAD đều(Dấu hiệu nhận biết tam giác đều)
b) Ta có: ΔBAD đều(cmt)
mà AH là đường trung tuyến ứng với cạnh BD(gt)
nên AH là đường cao ứng với cạnh BD(Định lí tam giác cân)
hay AH\(\perp\)BD(Đpcm)