K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

24 tháng 2 2021

a, ΔABD có BA = BD (gt) và ˆABDABD^ = ˆABCABC^ = 60o60o

⇒ ΔABD đều (đpcm)

b, ΔABD đều ⇒ AB = AD

Xét ΔAHB và ΔAHD có:

AH chung; AB = AD (cmt); HB = HD (H là trung điểm của BD)

⇒ ΔAHB = ΔAHD (c.c.c)

⇒ ˆAHBAHB^ = ˆAHDAHD^ mà 2 góc này kề bù

⇒ ˆAHBAHB^ = ˆAHDAHD^ = 90o90o

⇒ AH ⊥ BD (đpcm)

c, ΔABD đều ⇒ AB  = BD = AD = 2cm

⇒ HB = HD = 1cm

⇒ HC = BC - HB = 5 - 1 = 4cm

ΔAHB vuông tại H ⇒ AH = √AB2−HB2AB2−HB2 = √22−1222−12 = √33cm

ΔAHC vuông tại H ⇒ AC = √AH2+HC2AH2+HC2 = √3+423+42 = √1919cm

a) Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

Xét ΔBAD cân tại B có \(\widehat{ABD}=60^0\)(gt)

nên ΔBAD đều(Dấu hiệu nhận biết tam giác đều)

b) Ta có: ΔBAD đều(cmt)

mà AH là đường trung tuyến ứng với cạnh BD(gt)

nên AH là đường cao ứng với cạnh BD(Định lí tam giác cân)

hay AH\(\perp\)BD(Đpcm)

 

23 tháng 5 2018

a)Áp dụng định lí pytago vào tam giác ABC vuông tại A, ta có

BC^2=AB^2+AC^2

=>BC^2=4^2+3^2

=>BC^2=16+9=25

=>BC=căn25=5 (cm)

vậy,BC=5cm

b)Xét tam giác ABC và AED có

AB=AE(gt)

 là góc chung

AC=AD(gt)

=>tam giác ABC=tam giác AED(c-g-c)

Xét tam giác AEB có:Â=90*;AE=AB

=>tam giác AEB vuông cân tại A

Vậy tam giác AEB vuông cân

c)Ta có EÂM+BÂM=90*

      mà BÂM+MÂB=90*

=>EÂM=MÂB

mà MÂB=AÊD(cm câu b)

=>EÂM=AÊD hay EÂM=AÊM

xét tam giác EAM có: EÂM=AÊM(cmt)

=>tam giác EAM cân tại M

=>ME=MA                  (1)

Ta có góc ACM+CÂM=90*

mà BÂM+CÂM=90*

=>góc ACM=BÂM

mà góc ACM=góc ADM( cm câu b)

=>góc ADM=DÂM

Xét tam giác MAD có góc ADM=DÂM(cmt)

=>tam giác ADM cân tại M

=>MA=MD                   (2)

 Từ (1) và (2) suy ra MA=ME=MD

ta có định lí:trong 1 tam gáic vuông, đg trung truyến ứng với cạnh huyền bằng nửa cạnh huyền

=>MA=1/2ED

=>MA là đg trung tuyến ứng với cạnh ED

Vậy MA là đg trung tuyến của tam giác ADE

Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.a)     Tính BC?b)    Chứng minh tam giác ABI=tam giác HBIc)     Chứng minh BI là đường trung trực của đoạn thẳng AHd)    Chứng minh IA<ICe)     Chứng minh I là trực tâm tam giác ABCBài 2: Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.

a)     Tính BC?

b)    Chứng minh tam giác ABI=tam giác HBI

c)     Chứng minh BI là đường trung trực của đoạn thẳng AH

d)    Chứng minh IA<IC

e)     Chứng minh I là trực tâm tam giác ABC

Bài 2: Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường thẳng vuông góc với BC, cắt AC tại E.

a)     Cho AB=5cm, AC=7cm, tính BC?

b)    Chứng minh tam giác ABE=tam giác DBE?

c)     Gọi F là giao điểm của DE và BA, chứng minh EF=EC

d)    Chứng minh BE là trung trực của đoạn thẳng AD

Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Chứng minh tam giác ABK cân tại B

b)    Chứng minh DK vuông góc BC

c)     Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HAC

d)    Gọi I là giao điểm của AH và BD. Chứng minh IK//AC

Bài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).

a)     So sánh góc ABC và góc ACB. Tính góc ABH.

b)    Vẽ AD là phân giác của góc A (D thuộc BC), vẽ BI vuông góc AD tại I. Chứng minh tam giác AIB=tam giác BHA

c)     Tia BI cắt AC ở E. Chứng minh tam giác ABE đều

Bài 5: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Biết AC =8cm, AB=6cm. Tính BC?

b)    Tam giác ABK là tam giác gì?

c)     Chứng minh DK vuông góc BC

d)    Kẻ AH vuông góc BC. Chứng minh Ak là tia phân giác của góc HAC.

Bài 6: Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm

a)     Tam giác ABC là tam giác gì

b)    Vẽ BD là phân giác góc B. Trên cạnh BC lấy điểm E sao cho AB=AE. Chứng minh AD=DE

c)     Chứng minh AE vuông góc BD

d)    Kéo dài BA cắt ED tại F. Chứng minh AE//FC

Bài 7: Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H.

a)     Chứng minh tam giác ABH=tam giácACH

b)    Vẽ trung tuyến BM.Gọi G là giao điểm của AH và BM. Chứng minh G là trọng tâm của tam giac ABC

c)     Cho AB=30cm, BH=18cm.Tính AH ,AG

d)    Từ H kẻ HD // với AC (D thuộc AB) .Chứng minh ba điểm C,G,D thẳng hàng .

Bài 8: Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm

a)Tính BC

b) Gọi M là trung điểm của BC. Kẻ BH vuông góc AM tại H, CK vuông góc AM tại K. Chứng minh tam giác BHM=tam giac CKM

c)Kẻ HI vuông góc BC tại I .So sánh HI và MK

d) So sánh BH+ BK với BC

2
23 tháng 4 2016

đăng gì mà lắm thế nhõ ko ai trả lời thì sao

25 tháng 4 2016

GIÚP TỚ

Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.a)     Tính BC?b)    Chứng minh tam giác ABI=tam giác HBIc)     Chứng minh BI là đường trung trực của đoạn thẳng AHd)    Chứng minh IA<ICe)     Chứng minh I là trực tâm tam giác ABCBài 2: Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.

a)     Tính BC?

b)    Chứng minh tam giác ABI=tam giác HBI

c)     Chứng minh BI là đường trung trực của đoạn thẳng AH

d)    Chứng minh IA<IC

e)     Chứng minh I là trực tâm tam giác ABC

Bài 2: Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường thẳng vuông góc với BC, cắt AC tại E.

a)     Cho AB=5cm, AC=7cm, tính BC?

b)    Chứng minh tam giác ABE=tam giác DBE?

c)     Gọi F là giao điểm của DE và BA, chứng minh EF=EC

d)    Chứng minh BE là trung trực của đoạn thẳng AD

Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Chứng minh tam giác ABK cân tại B

b)    Chứng minh DK vuông góc BC

c)     Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HAC

d)    Gọi I là giao điểm của AH và BD. Chứng minh IK//AC

Bài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).

a)     So sánh góc ABC và góc ACB. Tính góc ABH.

b)    Vẽ AD là phân giác của góc A (D thuộc BC), vẽ BI vuông góc AD tại I. Chứng minh tam giác AIB=tam giác BHA

c)     Tia BI cắt AC ở E. Chứng minh tam giác ABE đều

Bài 5: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Biết AC =8cm, AB=6cm. Tính BC?

b)    Tam giác ABK là tam giác gì?

c)     Chứng minh DK vuông góc BC

d)    Kẻ AH vuông góc BC. Chứng minh Ak là tia phân giác của góc HAC.

Bài 6: Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm

a)     Tam giác ABC là tam giác gì

b)    Vẽ BD là phân giác góc B. Trên cạnh BC lấy điểm E sao cho AB=AE. Chứng minh AD=DE

c)     Chứng minh AE vuông góc BD

d)    Kéo dài BA cắt ED tại F. Chứng minh AE//FC

Bài 7: Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H.

a)     Chứng minh tam giác ABH=tam giácACH

b)    Vẽ trung tuyến BM.Gọi G là giao điểm của AH và BM. Chứng minh G là trọng tâm của tam giac ABC

c)     Cho AB=30cm, BH=18cm.Tính AH ,AG

d)    Từ H kẻ HD // với AC (D thuộc AB) .Chứng minh ba điểm C,G,D thẳng hàng .

Bài 8: Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm

a)Tính BC

b) Gọi M là trung điểm của BC. Kẻ BH vuông góc AM tại H, CK vuông góc AM tại K. Chứng minh tam giác BHM=tam giac CKM

c)Kẻ HI vuông góc BC tại I .So sánh HI và MK

d) So sánh BH+ BK với BC

5
1 tháng 5 2019

C1 : 

a) Xét tam giác ABC có BC2=AB2+AC2( Định lý Py-ta-go)

                                  Thay số:BC2=62+82

                                                BC2=36+64=100

                                              =>BC=10(cm)

b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2

Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có:

                             Bi chung, góc ABI= góc HBI ( cmt)

=> tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn)

c)Gọi giao của AH và BI là K 

Vì tam giác ABI=tam giác HBI (cmt)=> AB=HB( 2 cạnh tương ứng)

Xét tam giác AKB và tam giác HKB có:

AB=HB (cmt)

góc ABK=góc HBK(cmt)

BK chung

=. tam giác AKB= tam giác HKB ( c.g.c)

=> KB=KH ( 2 cạnh tương ứng)

=> K là trung điểm của BH (1)

Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK  hay AH vuông góc với BI(2)

Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH

                            


 
1 tháng 5 2019

C2 : 

a)ÁP DỤNG ĐỊNH LÝ PYTAGO THUẬN TRÒG TAM GIÁC ABC (BAC = 90 ĐỘ ) CÓ :

AB+AC2=BC2

=>52+72=BC2

=>BC2=25+49=74

HAY BC = CĂN BẬC HAI 74 =8.6 (CM)

b)XÉT HAI TAM GIÁC ABE (BAE = 90 ĐỘ ) VÀ TAM GIÁC DBE (BDE=90 ĐỘ ) CÓ :

AB=BD (GT)

BE LÀ CẠNH HUYỀN CHUNG

=>TAM GIÁC ABE = TAM GIÁC DBE (CẠNH HUYỀN _CẠNH GÓC VUÔNG )

C ) DO TAM GIÁC ABE = TAM GIÁC DBE (CÂU B ) 

=>AE=DE (2 CẠNH TƯƠNG ỨNG )

XÉT HAI TAM GIÁC AEF (EAF = 90 ĐỘ ) VÀ TAM GIÁC DEC (EDC = 90 ĐỘ ) CÓ :

E1 =E2

AE=DE (CMT)

=>TAM GIÁC AEF=TAM GIÁC DEC (CGV _ GÓC NHỌN KỀ )

=>ÈF=EC (2 CẠNH TƯƠNG ỨNG)