Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB và ΔADC có
AE=AD
\(\widehat{DAC}\) chung
AB=AC
Do đó: ΔAEB=ΔADC
Suy ra: BE=CF
b: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE
và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{ODB}=\widehat{OEC}\)
Xét ΔODB và ΔOEC có
\(\widehat{ODB}=\widehat{OEC}\)
BD=EC
\(\widehat{DBO}=\widehat{ECO}\)
Do đó: ΔODB=ΔOEC
a, xét tam giác ABE và tam giác ACD có:
AB=AC; góc A chung; AD=AE
nên tam giác ABE= tam giác ACD(c.g.c)
suy ra BE=CD
a/ Xét 2 tam giác BDE và CED có
BD=EC
DE chung
Góc BDE = góc DEC do chúng lần lượt bù với 2 góc bằng nhau là ADE và AED
=> dpcm (c.g.c)
b/ Có góc DKB bằng góc EKC do đối đỉnh
KD=KE
góc BDK=góc CEK
Vậy tam giác BOD = tam giác COE
a/ Xét tam giác ABE và tam giác ACD có :
AD = AE , góc A là góc chung của hai tam giác , AB = AC
=> tam giác ABE = tam giác ACD => CD = BE
b/ Dễ dàng chứng minh đc tam giác BED = tam giác CDE (c.c.c)
=> góc CED = góc CDE => tam giác ODE cân tại O => OD = OE (1)
Lại có BE = CD => OB = OC (2) ; góc BOD = góc EOC (đối đỉnh) (3)
Từ (1) , (2) , (3) suy ra tam giác BOD = tam giác OCE (c.g.c)
a) Xét tam giác ABE và tam giác ACD:
có+AB=AC(gt)
+A: góc chung
+AD=AE(gt)
Vậy tam giác ABE=tam giác ACD(c.g.c)
=> BE=CD( 2 cạnh tương ứng )
b)
- Vì tam giác ABE=tam giác ACD(cmt)
nên: ABD=ACE( 2 góc tương ứng )
- Xét tam giác BOD và tam giác COE:
có:+ góc BOD=COE( đối đỉnh)
+AB=AC( tam giác ABC cân vì có 2 cạnh bên bằng nhau) mà AD=AE(gt)=>BD=CE
+góc ABE=ACD(cmt)
Vậy tam giác BOD=COE(g.c.g)
^...^ ^_^
\(a,\left\{{}\begin{matrix}AB=AC\\AD=AE\\\widehat{BAC}\text{ chung}\end{matrix}\right.\Rightarrow\Delta AEB=\Delta ADC\left(c.g.c\right)\\ \Rightarrow BE=CD\\ b,\Delta AEB=\Delta ADC\\ \Rightarrow\widehat{ABE}=\widehat{ACD};\widehat{AEB}=\widehat{ADC}\\ \Rightarrow180^0-\widehat{AEB}=180^0-\widehat{ADC}\\ \Rightarrow\widehat{BDO}=\widehat{CEO}\\ \left\{{}\begin{matrix}\widehat{ABE}=\widehat{ACD}\\\widehat{BDO}=\widehat{CEO}\\BE=CD\end{matrix}\right.\Rightarrow\Delta BOD=\Delta COE\left(g.c.g\right)\)
câu a dễ, ta cm 2 tg ABE và ADC bằng nhau ( c -g - c ) vì góc A chung, AB = AC và AD = AE
câu b ta cm tam giác DOB = EOC (g-c-g) vì DE = EC ( tụ cm ), góc ODB = OEC và góc ABE = ACD do 2 tam giác ABE = ADC bằng nhau ở trên
k đúng cho tui nha