K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ACBF có 

N là trung điểm của CF

N là trung điểm của AB

Do đó: ACBF là hình bình hành

Suy ra: AF=BC

b: Xét tứ giác AECB có

M là trung điểm của AC

M là trung điểm của BE

Do đó: ABCE là hình bình hành

Suy ra:AE//BC và AE=BC

mà AF/BC

và AE,AF có điểm chung là A

nên A,E,F thẳng hàng

mà AE=AF

nên A là trung điểm của EF

c: Xét ΔABC có 

M là trung điểm của AC

N là trung điểm của AB

Do đó: MN là đường trung bình

=>MN//BC

hay MN//FE

6 tháng 11 2019

a) +Xét tam giác AEN và tam giác BNC có :
AN=BN (gt)

∠ANE=∠CNB ( 2 góc đối đỉnh )
EN=NC (gt)
=> tam giác AEN= tam giác BNC ( c.g.c )
=> AE=BC (1)
+ Xét tam giác AMD và tam giác CMB có :
AM=MC (gt)

∠AMD=∠CMB ( 2 góc đối đỉnh )
MD=MB (gt)
=> tam giác AMD = tam giác CMB (c.g.c)
=> AD=BC (2)
Từ (1),(2) => AE=AD
b) Ta có : ∠ABC + ∠BAC + ∠BCA = 180
Mà ∠ABC = ∠EAB ( tam giác AEN = tam giác BCN )
∠ACB = ∠CAD ( tam giác AMD = tam giác CMB )
=> ∠CAD + ∠BAC + ∠EAB = 180
=> E,A,D thẳng hàng

6 tháng 11 2019

nối c với e

ta thấy abce là hình bình hành 

vì có 2 dường chéo ac và be cắt nhau tại trung điểm mỗi đường

suy ra ae song song và bằng bc (1)

nối b với e

ta thấy acbf là hình bình hành 

vì có 2 dường chéo ab và ec cắt nhau tại trung điểm mỗi đường

suy ra af song song và bằng bc (2)

từ (1) và (2) suy ra AE = AF = BC

                              A là trung điểm EF 

13 tháng 12 2017

xét tam giác ame và tam giác bmc

me=mc (gt)

góc ema= góc bmc (đối đỉnh)

am=bm( m là trung điểm của ab)

=> tam giác ame= tam giác bmc(c.g.c)

=> góc eam= góc cbm ( 2 cạnh tương ứng)

mà góc eam và góc cbm SLT

=>ae //bc

xét tam giác afn và tam giác cbn

fn=bn (gt)

góc an f= góc bnc (đ đ)

an=cn ( n là trung điểm của ac)

=> tam giác a fn= tam giác cbn (c.g.c)

=> a f=cb (2 cạnh t ung)

mà ae=cb (tam giác ame= tam giác bmc)

=>a f= ae (=cb)

=> a là trung điểm của e f

22 tháng 4 2020

Bạn ơi, bạn chỉ mình cách viết kí hiệu góc ở hoc24.vn này đc ko ?

22 tháng 4 2020

bấn vào chức năng X2 trên thanh công cụ chỗ ghi câu hỏi nha và cảm ơn bạn nữavui

23 tháng 12 2016

1. Xét tam giác MAE và tam giác MCB có:

     ME = MB (gt)

     MA = MC (gt)

     Góc M1 = góc M2 (đối đỉnh)

=> Tam giác MAE = Tam giác MCB (c.g.c)

2. Xét tứ giác AEBC có:

     M là trung điểm BE (gt)

     M là trung điểm AC (gt)

=> Tứ giác AEBC là hình bình hành 

=> AE // BC và AE = BC (1)
Xét tứ giác FABC có:

   N là trung điểm BA (gt)

   N là trung điểm FC (gt)

=> Tứ giác FABC là hình bình hành

=> FA // BC và FA = BC (2)

Từ (1), (2) => AE = AF

23 tháng 12 2016


A B C M N E F

Hình xấu quá bạn thông cảm.

20 tháng 11 2017

bài 2) 

   Ta có:  16x : 2y = 128

    \(\Leftrightarrow\)24x : 2y = 27

    \(\Leftrightarrow\)24x - y = 27

   \(\Leftrightarrow\)4x - y = 7   (1)

Ta lại có:   x = \(\frac{y}{3}\)\(\Rightarrow\)x = 3y   (2)

Thay (2) vào (1) ta đc: 

            4*3y - y = 7

     \(\Leftrightarrow\)11y = 7

      \(\Leftrightarrow\)y = \(\frac{7}{11}\)

       \(\Rightarrow\)x = \(\frac{7}{11}\): 3 = \(\frac{7}{33}\)

20 tháng 11 2017

3, 

A B C M N E F

a, Xét t/g AME và t/g BMC có:

MA = MB (gt)

ME = MC (gt)

góc AME = góc BMC (đối đỉnh)

Do đó t/g AME = t/g BMC (c.g.c)

b, Vì t/g AME = t/g BMC (câu a) =>  góc AEM = góc BCM (2 góc tương ứng)

Mà góc AEM và góc BCM là hai góc ở vị trí so le trong nên AE // BC

c, Xét t/g ANF và t/g CNB có:

AN = CN (gt)

NF = NB (gt)

góc ANF = góc CNB (đối đỉnh)

Do đó t/g ANF = t/g CNB (c.g.c)

=> AF = BC (2 cạnh tương ứng)

d, Vì t/g ANF = t/g CNB (câu c) => góc AFN = góc NBC (2 góc tương ứng)

Mà góc AFN và góc NBC là hai góc ở vị trí so le trong nên AF // BC

Ta có: AE // BC, AF // BC 

=> AE trùng AF

=> A,E,F thẳng hàng (1)

Vì t/g AME = t/g BMC => AE = BC (2 góc tương ứng)

Ta lại có: AE = BC, AF = BC => AE = AF (2)

Từ (1) và (2) => A là trung điểm của EF

18 tháng 7 2019

a) Vì AM là phân giác của góc BAC

nên góc BAM = CAM

Xét ΔBAM và ΔCAM có:

AB = AC ( giả thiết )

Góc BAM = CAM ( chứng minh trên )

AM cạnh chung.

=> Δ BAM = ΔCAM ( c.g.c )

=> BM = CM ( 2 cạnh tương ứng )

mà M nằm giữa B và C

Do đó M là trung điểm của BC → ĐPCM.

b) Ta có: AB + BE = AE

AC + CF = AF

mà AB = AC ( đề bài ); AE = AF (đề bài)

=> BE = CF.

Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )

Lại có: Góc ABC + CBE = 180 độ (kề bù)

Góc ACB + BCF = 180 độ (kề bù)

=> ABC + CBE = ACB + BCF

=> Góc CBE = BCF.

Xét ΔBCE và ΔCBF có:

BE = CF ( chứng minh trên)

Góc CBE = BCF ( chứng minh trên)

BC cạnh chung ( theo hình vẽ)

=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.

c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM

Xét ΔMBE và ΔMCF có:

MB = MC ( chứng minh ở câu a )

Góc EBM = FCM ( chứng minh trên)

BE = FC ( chứng minh ở câu b)

=> ΔMBE = ΔMCF ( c.g.c )

=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.

d) Xét ΔEMN và ΔFMN có:

EM = FM ( chứng minh ở câu c )

EN = FN ( N là trung điểm EF )

MN chung.

=> ΔEMN = ΔFMN.

=> Góc ENM = FNM (2 góc tương ứng)

Suy ra MN là tia phân giác của góc ENF (1)

Có: góc BAM = CAM

Suy ra AM là tia phân giác của góc BAC (2)

Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.

Do đó A, M, N thẳng hàng → ĐPCM.