Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAM và ΔBEM có
BA=BE
\(\widehat{ABM}=\widehat{EBM}\)
BM chung
Do đó: ΔBAM=ΔBEM
Suy ra: MA=ME
Để chứng minh điều này, ta có thể sử dụng các bước sau:
- Chứng minh tam giác BAD cân tại B (vì BD = BA) và tam giác BAN cân tại B (vì BM là phân giác của góc A).
- Chứng minh góc BAD = góc BAN (vì hai tam giác cân trên có hai góc ở đáy bằng nhau).
- Chứng minh góc HAD = góc NAD (vì AN vuông góc với BD).
- Chứng minh tam giác HAD đồng dạng với tam giác NAD (vì hai tam giác có hai góc bằng nhau).
- Chứng minh DH/DA = NA/ND (vì hai tam giác đồng dạng trên có tỉ số các cạnh tương ứng bằng nhau).
- Chứng minh DH/DA = AC/AB (vì NA/ND = AC/AB theo định lí Thales).
- Chứng minh DH song song với AC (vì hai đoạn thẳng có tỉ số các cạnh tương ứng bằng nhau).
Vậy ta đã chứng minh được DH song song với AC.
a, xét tam giác abm và tam giác acm có:
ab=ac(gt)
góc bam=góc acm(gt)
am chung
=>tam giác abm=tam giác acm(cgc)
=>bm=cm(2 cạnh tương ứng)
b, xét tam giác abi và tam giác aci có:
ab=ac(gt)
góc bam=góc acm(gt)
ai chung
=>tam giác abi = tam giác aci(cgc)
=>ib=ic (2 cạnh tương ứng)
=> i cách đều b và c
=>ai là đường trung trực của bc
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a: Xét ΔADB và ΔADC có
AD chung
góc BAD=góc CAD
AB=AC
=>ΔABD=ΔACD
b: Xét ΔDHB và ΔDHC có
DH chung
HB=HC
DB=DC
=>ΔDHB=ΔDHC
=>góc BDH=góc CDH
=>DH là phân giác của góc BDC
c: ΔABC cân tại A
mà AH là phân giác
nên AH vuông góc CB
a) Ta có BH, CH lần lượt là hình chiếu của đường xiên AB, AC trên đường thẳng BC và AB < AC (gt).
=> BH < CH (quan hệ giữa đường xiên và hình chiếu)
Mặt khác BH, CH lần lượt là hình chiếu của đường xiên BM, CM trên đường thẳng BC và BH < CH.
=> BM < CM (quan hệ giữa hình chiếu và đường xiên).
b) (widehat {DMH} > widehat {BHM} = 90^circ (widehat {DMH}) là góc ngoài của tam giác BMH)
∆DMH có (widehat {DMH}) tù =>(widehat {DMH}) là góc lớn nhất trong ba góc
=> DH là cạnh lớn nhất trong ba cạnh (quan hệ giữa góc và cạnh trong một tam giác)
Vậy DM < DH.
a) Ta có BH, CH lần lượt là hình chiếu của đường xiên AB, AC trên đường thẳng BC và AB < AC (gt).
=> BH < CH (quan hệ giữa đường xiên và hình chiếu)
Mặt khác BH, CH lần lượt là hình chiếu của đường xiên BM, CM trên đường thẳng BC và BH < CH.
=> BM < CM (quan hệ giữa hình chiếu và đường xiên).
b) \(\widehat{DMH}\) > \(\widehat{BMH}\) = \(90^0\)(\(\widehat{DMH}\) là góc ngoài của tam giác BMH)
∆DMH có \(\widehat{DMH}\) tù =>\(\widehat{DMH}\) là góc lớn nhất trong ba góc
=> DH là cạnh lớn nhất trong ba cạnh (quan hệ giữa góc và cạnh trong một tam giác)
Vậy DM < DH