Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Xét \(\Delta ADB\) và \(\Delta ADC\) có:
AB = AC ( gt )
\(\widehat{D_1}=\widehat{D_2}\left(=90^o\right)\)
BD = DC ( gt )
\(\Rightarrow\Delta ADB=\Delta ADC\left(c-g-c\right)\)
a, Ta có AC > AB => ^B > ^C
b, Ta có : ^ADC = 1800 - ^DAC - ^C
^ADB = 1800 - ^DAB - ^B
mà ^DAC = ^DAB ( AD là pg )
^C > ^B => ^ADC < ^ADB
TL:
a, Ta có AC > AB => ^B > ^C
b, Ta có : ^ADC = 1800 - ^DAC - ^C
^ADB = 1800 - ^DAB - ^B
mà ^DAC = ^DAB ( AD là pg )
^C > ^B => ^ADC < ^ADB
k mik nha bn
a: \(\widehat{BAD}+\widehat{B}+\widehat{ADB}=\widehat{CAD}+\widehat{C}+\widehat{ADC}\left(=180^0\right)\)
\(\Leftrightarrow\widehat{B}+\widehat{ADB}=\widehat{C}+\widehat{ADC}\)
mà \(\widehat{B}>\widehat{C}\)
nên \(\widehat{ADB}< \widehat{ADC}\)
a, Ta có ^ADC = 1800 - ^C - ^DAC
^ADB = 1800 - ^B - ^BAD
mà ^DAC = ^BAD ( AD là pg )
^B > ^C (gt)
=> ^ADC > ^ADB
Trả lời:
b,xét 2tam giác ABD và ACD:
BAD=CAD (gt)1
doAB<AC⇒góc B>gócC 2
Từ 1,2⇒ADB<ADC(ĐL)(ĐPCM)
a,vì AD là tia PG G.A⇒D∈∈BC
Ta có:BD+DC=BC
⇒BD<BC(ĐPCM)
~Học tốt!~
a) Xét tam giác ADB và tam giác ADC có
AB < AC ( gt )
=> tam giác ADB < tam giác ADC
=> BD < CD
b) Từ tam giác ADB < tam giác ADC
=> ^ADB < ^ADC