Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác ABD và tam giác ACD có:
AB=AC (gt)
BD=DC (vì D là trung điểm của BC)
AD là cạnh chung
=>tam giác ABD =tam giác ACD (c.c.c)
b)Xét tam giác BID và tam giác CID có:
BD=DC (vì D là trung điểm của BC)
ADB=ADC=90 độ (vì D là trung điểm của BC)
ID là cạnh chung
=>tam giác BID=tam giác CID (c.g.c)
=>BI=IC (2 cạnh tương ứng)
c) Câu c mình không hiểu đề cho lắm ý bạn là góc BAC=2 làn góc IBC
a. Ta có AB = AC ( gt)
=> Tam giác ABC cân tại A
Nối AD ta được đường trung trực AD
=> AD cũng là đường cao ( tính chất của tam giác cân)
Vì tam giác ABC cân nên góc BAD = góc CAD
Xét tam giác ABD và tam giác ACD có:
AD chung
góc BAD = góc CAD (cmt)
AB=AC (gt)
=> tam giac ABD = tam giác ACD ( c.g.c)
b. Xét tam giác BID và tam giác CID có:
ID chung
BD =DC ( gt)
góc IDB = góc IDC = 900
=> tam giác BID= tam giác CID ( 2 cạnh góc vuông)
=> IB =IC ( 2 cạnh tương ứng )
c. chưa nghĩ ra :))
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
Ta có hình vẽ:
Câu d mình quên kí hiệu vuông góc rồi, bạn tự bổ sung nhé
a/ Xét tam giác AMB và tam giác AMC có:
AB = AC (GT)
BM = MC (GT)
AM : cạnh chung
=> tam giác AMB = tam giác AMC (c.c.c)
b/ Xét tam giác AEM và tam giác AFM có:
\(\widehat{E}\)=\(\widehat{F}\)=900
AM : cạnh chung
\(\widehat{EAM}\)=\(\widehat{FAM}\) ( vì tam giác AMB = tam giác AMC)
Vậy tam giác AEM = tam giác AFM (g.c.g)
=> AE = AF (2 cạnh tương ứng)
c/ Xét tam giác EBM và tam giác FCM có:
\(\widehat{E}\)=\(\widehat{F}\)=900
BM = MC (GT)
\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác ABC cân có AB = AC)
Vậy tam giác EBM = tam giác FCM
(theo trường hợp cạnh huyền góc nhọn)
=> BE = FM (2 cạnh tương ứng) (1)
Ta có: EM: cạnh chung (2)
Ta có: 2 tam giác AEM và tam giác AFM đối xứng qua cạnh chung AM và có: \(\widehat{E}\)=\(\widehat{F}\)=900
=> \(\widehat{EMF}\) = 900 = \(\widehat{BEM}\) (3)
Từ (1),(2),(3) => tam giác BEM = tam giác EFM
=> \(\widehat{FEM}\)=\(\widehat{EMB}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> EF // BC
d/ Xét tam giác ABN và tam giác ACN có:
AB = AC (GT)
\(\widehat{BAN}\)=\(\widehat{CAN}\) (vì tam giác AMB = tam giác AMC)
AN: chung
=> tam giác ABN = tam giác ACN (c.g.c)
BN = CN ( 2 cạnh tương ứng)
Xét tam giác BMN và tam giác CMN có:
MN: chung
BM = MC (GT)
BN = CN (đã chứng minh)
=> tam giác BMN = tam giác CMN (c.c.c)
-Ta có: tam giác ABM = tam giác ACM (câu a)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
Mà \(\widehat{AMB}\)+\(\widehat{AMC}\) = 1800 (kề bù)
=> góc AMB = góc AMC = 900
-Ta có: tam giác BMN = tam giác CMN (đã chứng minh)
=> \(\widehat{BMN}\)=\(\widehat{CMN}\) (2 góc tương ứng)
mà \(\widehat{BMN}\)+\(\widehat{CMN}\)=1800 (kề bù)
=> góc BMN = góc CMN = 900
Ta có: \(\widehat{AMB}\)+\(\widehat{BMN}\)=900+900 = 1800
hay \(\widehat{AMC}\)+\(\widehat{CMN}\)=900+900 = 1800
hay A,M,N thẳng hàng
a. Ta có tam giác ABC là tam giác có cạnh AB dài hơn cạnh AC, nên góc A cũng là góc nhọn. Vậy AE sẽ là đường cao của tam giác ABC. Khi đó, ta có:
Tam giác AKB cũng là tam giác nhọn, nên ta có đường cao AH trong tam giác AKB.
Đường cao AH cũng là đường cao của tam giác ABC, nên ta có:
AH>HG
Trong đó, HG là đoạn thẳng nối điểm H và điểm G, trong đó G nằm trên đoạn c AB sao cho BG = BK.
Từ hai bất đẳng thức trên, ta có:
KB = KG + GB < GE + BG = BE
Do đó, KB > BK.
b. Giống như phần a, ta có:
AH>HG
KG>GE
Ta cũng có cách chứng minh tương tự như phần a để suy ra:
BA>AK>BK
Vậy, BA>BK.