Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên cạnh AB lấy điểm N sao cho AN = AC.
\(\Delta AMC=\Delta AMN\)(c.g.c), suy ra \(AC=AN,MC=MN\)
Áp dụng BĐT tam giác cho \(\Delta BMN\), ta có:
\(AB-AC=AB-AN=BN>MB-MN=MB-MC\)
Trên cạnh AB lấy lấy điểm N sao cho AN=AC.
=> \(\Delta\)AMC=\(\Delta\)AMN (c.g.c) => MC=MN (2 cạnh tương ứng)
Ta có: AB-AC=AB-AN=NB (Thay AN=AC)
Xét \(\Delta\)MNB: NB>MB-MN (Bất đẳng thức tam giác) , MN=MC => NB>MB-MC
Mà NB=AB-AC => AB-AC>MB-MC hay MB-MC<AB-AC (đpcm)
a) Bạn xét 2 tam giác ABM và tam giác ADM ( c-g-c )
Suy ra BM = DM ( 2 cạnh tương ứng )
b) Xét 2 tam giác AKD và tam giác ACB ( g-c-g )
Suy ra AK = AC ( 2 cạnh tương ứng )
Suy ra tan giác AKC cân tại A
Mấy cái tam giác bằng nhau bạn tự chứng minh
áp dụng bất đẳng thức tam giác ta có:
trong tam giác AMB, ta có bất đẳng thức tam giác:
MB<AB+AM
trong tam giác AMC ta có bất đẳng thức tam giác :
MC<AC+AM
từ 2 điều trên suy ra
MB-MC<(AB+AM)-(AC+AM)
suy ra MB-MC<AB+AM-AC-AM
suy ra MB-MC<AB-AC(đfcm)