K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2022

Chắc lớp 6 chưa học đến quá khó đâu , mình làm cách mang tính trực quan nhé 

Ta có lục giác đều ABCDEG có các góc tạo bởi 2 cạnh kề nhau là 120 độ.

Khi lấy giao điểm O của các đường chéo đã chia hình thành 6 tam giác cân tại O và có góc ở đáy là 120: 2 =60 độ

Nên các tam giác AOB.BOC,COD,DOE,EOG,GOA là tam giác đều

=> AO=BO=CO=DO=OE=OG

20 tháng 3 2020

Tự vẽ hình.

a) Xét tam giác OAB có AB // CD

⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)

=> OC = 4cm, DC = 6cm

Vậy OC = 4cm và DC = 6cm

b) Xét tam giác FAB có DC // AB

⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )

c) Theo (1), ta đã có:

OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)

Vì MN // AB mà AB // DC => MN // DC

Xét tam giác ADC có MO// DC

⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)

CMTT : ONDC=OBDBONDC=OBDB (4)

Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )

5 tháng 3 2022

Áp dụng định lý phân giác ta có:

\(\dfrac{AD}{DC}=\dfrac{AB}{AC}=\dfrac{4}{5}\Rightarrow\dfrac{AD}{4}=\dfrac{DC}{5}=\dfrac{AD+DC}{4+5}=\dfrac{10}{9}\)

\(\dfrac{AD}{4}=\dfrac{10}{9}\Rightarrow AD=\dfrac{40}{9}\left(cm\right)\\ \dfrac{DC}{5}=\dfrac{10}{9}\Rightarrow DC=\dfrac{50}{9}\)

Áp dụng định lý phân giác ta có:

\(\dfrac{AE}{EB}=\dfrac{AC}{BC}=\dfrac{5}{6}\Rightarrow\dfrac{AE}{5}=\dfrac{EB}{6}=\dfrac{AE+EB}{5+6}=\dfrac{8}{11}\)

\(\dfrac{AE}{5}=\dfrac{8}{11}\Rightarrow AE=\dfrac{40}{11}\left(cm\right)\\ \dfrac{EB}{6}=\dfrac{8}{11}\Rightarrow EB=\dfrac{48}{11}\left(cm\right)\)

 

a: CB=10cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA^2=BH*BC

c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

=>ΔBAD đồng dạng với ΔBHI

=>BA/BH=BD/BI

=>BA/BD=BH/BI

=>BA/BH=BD/BI=BC/BA

=>ΔBDC đồng dạng với ΔBIA

3 tháng 5 2023

a)Có tg ABC vuông tại a

áp dụng đl pytago ta có:

\(BC^2=AB^2+AC^2=6^2+8^2=100\\ \Rightarrow BC=10\left(cm\right)\)

Có BD là đg phân giác tg ABC 

\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\left(1\right)\)

lai co: AD+DC=AC=8

=>AD=8-DC

thay vao 1

\(\Rightarrow\dfrac{8-DC}{DC}=\dfrac{3}{5}\)

\(\Leftrightarrow DC=5\\ \Rightarrow AD=3\)

b) xét tg ABC và tg HBA có:

+góc BAH = AHB(=90 độ)

+góc B chung

=> tg ABC đồng dạng tg HBA (gg) (đpcm)

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{BA}\\ \Leftrightarrow AB^2=HB.BC\left(dpcm\right)\)

c) có: + góc C =\(90^o-\widehat{B}\)  (goc A = 90 do)

\(\widehat{BAH}=90^o-\widehat{B}\)  (goc AHB =90do)

=> goc BAH = goc C

xet tg ABI va tg CBD co

+goc BAH =goc C

+ goc ABI = goc DBC (BD la phan giac)

=> tg ABI va tg CBD dong dang (g.g) (dpcm)

 

 

24 tháng 3 2023

 

xét ΔABC có AD là đường phân giác 

->\(\dfrac{AB}{BO}=\dfrac{AC}{OC}\)

áp dụng dãy tỉ số bằng nhau ta có

\(\dfrac{AB}{BO}=\dfrac{AC}{OC}=\dfrac{AB+AC}{BO+DO}=\dfrac{AC+AB}{BC}hay\dfrac{6}{BO}=\dfrac{10}{OC}=\dfrac{10+6}{8}=2\)

suy ra: \(BO=\dfrac{6}{2}=3\left(cm\right)\)

             \(CO=\dfrac{10}{2}=5\left(cm\right)\)

O ở đâu vậy bạn?

6 tháng 3 2020

Hình bạn tự vẽ nhé!

tg ABC cân tại B vì có BA=BC

=> góc BAC= (180-gB)/2

Tam giác ANC và CMA bằng nhau theo TH g-c-g vì có chung AC,gBAC=gBCA, gMAC=gNCA ( bằng 1 nửa góc lớn)

=> AN=MC

=>AB-AN=BC-MC

=>NB=MB

=>tgBMN cân tại B

=> gBNM= (180-gB)/2 và bằng góc BAC

=> MN//AC ( có 2 góc đồng vị=nhau)

b, Theo tính chất tia phân giác của góc BCA, vì CN là phân giác=> BN/AN=BC/AC ( nếu ko nhớ thì mở lại sách nhé!)

=>BN/(BN+AN)=BC/(BC+AC) ( theo tc tỉ lệ thức nhé)

=>BN/BA=8/14

Xét  tg ABC có MN//AC => BN/AN=MN/AC=> 8/14=MN/6 => MN=8.6/14=3,43...( sao lẻ thế nhỉ)

Xem đúng không nhé

26 tháng 9 2020

Sai đề bạn ơi