K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

a, bạn dễ dàng chứng minh được tam giác ABC vuông tại A theo định lí Py-ta-go đảo

-áp dụng tỉ số lượng giác sinB = \(\frac{4,5}{7,5}\)=> góc B= 37o => góc C = 53o

-áp dụng HTL cho tam giác vuông ABC có đường cao AH: AH.BC = AB.AC => AH = 3,6 (cm)

25 tháng 2 2018

Bạn giúp mk luôn câu b đc ko mk hơi bí

Tham khảo:Cho tam giác ABC có AB = 6cm; AC = 4,5; BC = 7,5cm
a) Chứng minh tam giác ABC vuông
b) Tính góc B,C và đường cao AH
c) Lấy M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB;AC lần lượt là P và Q. Chứng minh PQ=AM. Hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất

a) Ta thấy BC là cạnh dài nhất sẽ là cạnh huyền
Áp dụng Pytago đảo
AB² + AC² = 6² + 4,5² = 56.25
BC² = 7,5² = 56,25
=> AB² + AC² = BC²
=> Vuông tại A
=> Tam giác ABC là tam giác vuông
b)
sinB = AC / BC = 4,5 / 7,5 = 3 / 5
=> Góc B = 36°52'
sinC = AB / BC = 6 / 7,5 = 4 / 5
=> Góc C = 53°7'
c)
Ta dễ dàng cm AQMP là hình chữ nhật
Suy ra: 2 đường chéo hình chữ nhật bằng nhau.
Để PQ nhỏ nhất  AM nhỏ nhất
 AM VUÔNG GÓC VỚI BC
Vậy khi M là hình chiếu của điểm A trên BC thí pq nhỏ nhất

2 tháng 9 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Ta có:  A B 2   +   A C 2   =   6 2   +   4 , 5 2   =   7 , 5 2   =   B C 2

nên tam giác ABC vuông tại A. (đpcm)

Để học tốt Toán 9 | Giải bài tập Toán 9

= >   ∠ B   =   37 ° = >   ∠ C   =   90 °   -   ∠ B   =   90 °   -   37 °   =   53 °

Mặt khác trong tam giác ABC vuông tại A, ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

=> AH = 3,6 cm

b) Gọi khoảng cách từ M đến BC là MK. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta thấy SMBC = SABC khi MK = AH = 3,6 cm

Do đó để SMBC = SABC thì M phải nằm trên đường thẳng song song và cách BC một khoảng là 3,6 cm (có hai đường thẳng như trên hình).

24 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

b)Để SMBC = SABC thì M phải cách BC một khoảng bằng AH. Do đó M phải nằm bên trên hai đường thẳng song song với BC, cách BC một khoảng bằng 3,6cm.

24 tháng 4 2017

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

b)Để SMBC = SABC thì M phải cách BC một khoảng bằng AH. Do đó M phải nằm bên trên hai đường thẳng song song với BC, cách BC một khoảng bằng 3,6cm.

14 tháng 10 2014


a)ta thấy AB^2+AC^2=56.25 và BC^2=56.25 
=>AB^2+BC^2=BC^2<=>tam jác ABC vuông tại A 
Sin B=AC/BC=4.5/7.5<=>B=36độ 52 phút 11.63 giây (bấm shift sin 4.5/7.5 =) 
sin c=AB/BC =>C=53đô 7 phút 48.37 giây 
Sin C=AH/Ac =>AH=sin C*AC=3.6 
b)qua A kẻ đường thẳng d song song BC.diện tích tam jác ABC luôn bằng diện tích tam jác BMC khi M thuộc d.(vì MH sẽ luôn = AH 

6 tháng 4 2016

cau hoi ngu nguoi

21 tháng 10 2021

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)

18 tháng 7 2020

K H C M A M' B 4,5 6 7,5

a) Ta có: AB2 + AC2 = 62 + 4,52 = 7,52 = BC2

nên tam giác ABC vuông tại A ( đpcm )

Ta có : \(tgB=\frac{AC}{AB}=\frac{4,5}{6}=0,75\)

\(\Rightarrow\widehat{B}=37^o\)

\(\Rightarrow\widehat{C}=90^o-\widehat{B}=90^o-37^o=53^o\)

Mặt khác trong tam giác ABC vuông tại A, ta có :

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

nên \(\frac{1}{AH^2}=\frac{1}{36}+\frac{1}{20,25}\)

\(\Rightarrow AH^2=\frac{36.20,25}{36+20,25}=12,96\)

=> AH = 3,6 cm

b) Gọi khoảng cách từ M đến BC là MK. Ta có :

\(S_{ABC}=\frac{1}{2}AH.BC\)và   \(S_{MBC}=\frac{1}{2}MK.BC\)

Ta thấy SMBC = SABC khi MK = AH = 3,6 cm

Do đó để SMBC = SABC thì M phải nằm trên đường thẳng song song và cách BC một khoảng là 3,6 cm  (có hai đường thẳng như trên hình ).

cho tam giác ABC vuông tại A .Biết AB=7cm và AC=21 cm .tính các tỉ số lượng giác của góc B vá góc C 

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}=53^0\)

=>\(\widehat{C}=37^0\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=4,8(cm)