Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
a: Xét ΔMIN và ΔMIP có
MI chung
IN=IP
MN=MP
Do đó: ΔMIN=ΔMIP
a, Xét t/g AMB và t/g AMC có:
AB=AC(gt)
BAM=CAM(gt)
AM chung
=>t/g AMB=t/g AMC (c.g.c)
b, Xét t/g BEM và t/g CMF có:
góc BEM = góc CFM = 90 độ (gt)
MB = MC (t/g AMB=t/g AMC)
góc EBM = góc FCM (gt)
=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)
=>ME=MF (2 cạnh tương ứng)
c, BI // FC => góc IBM = góc FCM (so le trong)
Xét t/g BIM và t/g CFM có:
góc IBM = góc FCM (vừa chứng minh)
MB = MC (t/g AMB = t/g AMC)
BMI = CMF (đối đỉnh)
=>t/g BIM = t/g CFM (g.c.g)
=>BI = BF (2 cạnh tương ứng)
Mà BE = CF (t/g BEM = t/g CFM)
=> BE = BI
d, Vì MI = MF (t/g BIM = t/g CFM), ME = MF (câu b)
=> MI = ME
Mà \(MI=\frac{IF}{2}\)
=> \(ME=\frac{IF}{2}\)
Xét ΔABC có BC-AB<AC<BC+AB
=>16-3<AC<16+3
=>13<AC<19
mà AC là số nguyên tố
nên AC=17(cm)
(giả thiết kết luận tự làm nha)
a) xét hai tam giác: ABM và ECM có:
AB=EC(gt)
\(\widehat{AMB}=\widehat{CME}\)(gt)
BM=CM(gt)(do AM là trung tuyến)
=> 2 tam giác đó bằng nhau
b) ta có \(\widehat{BAM}=\widehat{ECM}\)(hai góc tương ứng,do tam giác ABM=tam giác ECM - theo cma)
mà hai góc lại ở vị trí so le trong nên => \(EC//AB\)
c) ta có tam giác ABC cân tại A (gt)
=> \(\widehat{ABC}=\widehat{ACB}\)mà \(\widehat{ABC=}\widehat{ECM}\) (hai góc tương ứng)
=> \(\widehat{ACM}=\widehat{ECM}\)=> CB là phân giác
a) Sửa đề: Tam giác ABC cân. \(\rightarrow\) Tam giác ABI cân.
Xét \(\Delta ABD\) vuông tại A và \(\Delta IBD\) vuông tại I:
BD chung.
\(\widehat{ABD}=\widehat{IBD}\) (BD là phân giác).
\(\Rightarrow\Delta ABD=\Delta IBD\) (cạnh huyền - góc nhọn).
\(\Rightarrow BA=BI\) (2 cạnh tương ứng).
\(\Rightarrow\Delta ABI\) cân tại A.
b) Xét \(\Delta ADQ\) và \(\Delta IDC:\)
\(\widehat{ADQ}=\widehat{IDC}\) (đối đỉnh).
\(\widehat{QAD}=\widehat{CID}\left(=90^o\right).\)
\(AD=ID\left(\Delta ABD=\Delta IBD\right).\)
\(\Rightarrow\Delta ADQ=\Delta IDQ\left(g-c-g\right).\)
\(\Rightarrow AQ=IC\) (2 cạnh tương ứng).
c) Ta có:
\(BQ=BA+AQ.\\ BC=BI+IC.\)
Mà \(\left\{{}\begin{matrix}BA=BI\left(cmt\right).\\AQ=IC\left(cmt\right).\end{matrix}\right.\)
\(\Rightarrow BQ=BC.\)
\(\Rightarrow\Delta BQC\) cân tại Q.
Hình tự vẽ
d: BK=BA+AK
BC=BE+EC
mà BA=BE và AK=EC
nên BK=BC
=>góc BKC=góc BCK