K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

2 tháng 3 2022

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

b.Xét tam giác vuông ABH và tam giác vuông ADH, có:

HD = HB ( gt )

AH: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )

=> AB = AD ( 2 cạnh tương ứng )

26 tháng 4 2016

a / BC2 = AB2 + AC

26 tháng 4 2016

a) xét tam giac ABC vuông tại A ta có

BC2= AB2+AC2 (định lý pitago)

BC2=62+82

BC2=100

BC=10

b) Xét tam giac ABH và tam giac ADH ta có

HB=HD (gt)

AH=AH (cạnh chung)

góc AHB= góc AHD (=90)

-> tam giác ABH= tam giac ADH (c-g-c)

-> AB= AD ( 2 cạnh tương ứng)

c) 

Xét tam giac ABHvà tam giac EDH ta có

HB=HD (gt)

AH=EH (gt)

góc AHB= góc EHD (=90)

-> tam giác ABH= tam giac EDH (c-g-c)

-> góc ABH = góc EDH (2 góc tương ứng )

mà 2 góc  nằm ở vị trí sole trong

nên AB// ED

lại có AB vuông góc AC ( tam giac ABC vuông tại A)

do đó ED vuông góc AC

2 tháng 5 2016

A C B H E 8cm 6cm

a)

Áp dụng định lý Py-ta-go vào tam giác vuông ABC:

BC2= AB2+AC2= 62+82= 36 + 64= 100

\(\Rightarrow BC=\sqrt{100}=10cm\)

b)

Xét tam giác AHD và tam giác AHB:

AHD=AHB = 90o

AH chung

HD=HB

\(\Rightarrow\)tam giác AHD = tam giác AHB (2 cạnh góc vuông)

\(\Rightarrow\)AB=AD (2 cạnh tương ứng)

c)

Xét tam giác AHB và tam giác EHD:

HA = HE

AHB=EHD (đối đỉnh)

HD=HB

\(\Rightarrow\)tam giác AHB = tam giác EHD (c.g.c)

\(\Rightarrow\)BAH=DEH (2 góc tương ứng)

Ta có:

         BAH+HAC = 90o (phụ nhau)

\(\Leftrightarrow\)   DEH +HAC =90o 

\(\Rightarrow\)tam giác ACE vuông tại C

\(\Rightarrow\)ED vuông góc với AC

d)

Ta có : AH là cạnh góc vuông lớn của tam giác AHD.

              DH là cạnh góc vuông bé của tam giác AHD

\(\Rightarrow\)AH > DH (1)

Mà: AE = 2 * AH           (2)

       BD= 2* DH             (3)

\(\Rightarrow\)AE > BD

2 tháng 5 2016

B A C H E D

a,Áp dụng định lí Pytago vào tam giác vuông ABC, ta có:

BC2=AB2+AC2

\(\Rightarrow\) BC2=62+82=36+64=100

\(\Rightarrow\) BC=\(\sqrt{100}\) =10 (cm)

b,Xét 2 tam giác vuông AHB và AHD có: góc BHA=góc DHA(=90 độ ); HB = HD ( gt );HA chung

\(\Rightarrow\) tam giác AHB = tam giác AHD. suy ra AB = AD ( 2 cạnh tương ứng )

c, Xét tam giác BHA và tam giác CHE có: HB=HC(gt);HA=HE (gt);góc BHA= góc CHE (đối đỉnh)

\(\Rightarrow\) tam giác BHA = tam giác CHE ( c.g.c). Suy ra góc ABC = góc ECB ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong nên BA//EC.

Ta có BA//EC mà BA vuông góc với AC nên EC vuông góc vói AC

                                            

18 tháng 4 2017

bạn ơi đầu bài câuB là sao z, HD=HD

18 tháng 4 2017
THANK YOU!
10 tháng 5 2017

A B C H D E

a) \(\Delta\)ABC: ^A=900 => AB2+AC2=BC2 <=> BC2-AB2=AC2 (1)

Thay AB=6cm, BC=10cm vào (1), ta có: 102-62=AC2 => 100-36=AC2

=> AC2=64 (cm) => AC2=8=> AC=8 (cm).

b) Ta có: AH \(⊥\)BC hay AH \(⊥\)BD. Mà HB=HD => AH là đường trung trực của BD

=> AB=AD (Tính chất đường trung trực của đoạn thẳng) (đpcm)

c) Nối E với D.

Xét \(\Delta\)AHB và \(\Delta\)EHD:

HB=HD

^AHB=^EHD=900  => \(\Delta\)AHB=\(\Delta\)EHD (c.g.c)

HA=HE

=> ^HBA=^HDE (2 góc tương ứng) . Mà 2 góc này ở vị trí so le trong =>AB//ED

Mặt khác: AB \(⊥\)AC => ED \(⊥\)AC (Quan hệ song song, vuông góc)

Xét \(\Delta\)AEC: CH \(⊥\)AE, ED \(⊥\)AC => D là trực tâm của \(\Delta\) AEC 

=> AD \(⊥\)EC (đpcm)

10 tháng 5 2017

A B C

a) Áp dụng định lý Py-ta-go vào \(\Delta ABC\) vuông tại A

BC2 = AB2 + AC2

102 = 62 + AC2

=> AC2 = 100 - 36 = 64

=> AC =8