Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có AB=AC và BE=CM
=> AB - BE=AC - CM
=> AE = AM
=> tam giác AEM cân tại A
b) Xét ΔABM và ΔACE có:
+ AB=AC
+ góc A chung
+ AM = AE
=> ΔABM = ΔACE (c-g-c)
=> góc ABM = góc ACE
c) Do tam giác ABC cân tại A và AEM cân tại A
=> góc AEM = góc AME = góc ABC = góc ACB
=> EM // BC
d) Xét ΔDBC và ΔDNM có:
+ DB = DN
+ góc BDC = góc NDM (đối đỉnh)
+ DC = DM
=> ΔDBC = ΔDNM
=> góc DBC = góc DNM
=> MN // BC
=> EM trùng với MN
=> EN // BC
https://olm.vn/hoi-dap/detail/67684739146.html
Ta có : AB = AC => tam giác ABC cân tại A
Ta lại có :
B = C ( do ABC cân )
AH chung
BM = MC ( gt )
=> AMB = AMC ( c- g - c )
b) Ta có ABC cân
MÀ M là trung điểm của BC
=> AM là đường cao của ABC
=> AM vuông với BC
a) Xét \(\Delta AMB\)và \(\Delta AMC\)có:
AB = AC (gt)
AM : cạnh chung (gt)
BM = CM (gt)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
b) \(\Delta ABC\): có M là trung điểm BC => AM là đường trụng trực của BC.
Mà \(\Delta ABC\)cân tại A nên đường trụng trực đồng thời cũng là đường cao.
\(\Rightarrow AM\)vuông góc \(BC\)
c) Xét \(\Delta ABE\)và \(\Delta ACD\)có:
AC = AB (gt)>
Góc A : góc chung (gt)
Do AB = AC(gt) : BD = CE (gt)
=> AB - BD = AC - CE
=> AD = AE.
Vậy \(\Delta ABE=\Delta ADC\)(c.g.c)
d) \(\Delta ABC\)cân có:
BD = CE
2 đoạn thằng cách đều BC nên khi kẻ DE thì \(DE\)//\(BC\).
a: Xét ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
Do đo ΔMAB=ΔMDC
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD
c: Xét ΔAHB vuông tại H và ΔDKC vuông tại K có
AB=DC
góc ABH=góc DCK
Do đo: ΔAHB=ΔDKC
=>AH=DK và BK=CH
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
c: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
=>\(\widehat{DCB}=\widehat{EBC}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC