Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}AB=AC\\\widehat{BAM}=\widehat{CAM}\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta BAM=\Delta CAM\left(c.g.c\right)\\ b,\Delta BAM=\Delta CAM\\ \Rightarrow MB=MC\\ \Rightarrow M\text{ là trung điểm }BC\\ c,\Delta BAM=\Delta CAM\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\\ \text{Mà }\widehat{AMB}+\widehat{AMC}=180^0\\ \Rightarrow\widehat{AMB}=90^0\\ \Rightarrow AM\bot BC\)
Tự vẽ hình (câu c thiếu điều kiện để vẽ điểm F)
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
AB=AC
BM=MC
AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(C.C.C\right)\)
b) \(\Delta ABC\)vuông tạ A (AB=AC). M là trung điểm của BC => AM Vừa là đường cao, đường trung trực, đường phân giác
c) Thiếu điều kiện vẽ điểm F
Ta có hình vẽ sau:
a/ Xét ΔABI và ΔACI có:
AI: Cạnh chung
AB = AC (gt)
BI = CI (gt)
=> ΔABI = ΔACI (c.c.c) (đpcm)
=> \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng)
=> AI là tia p/g của \(\widehat{BAC}\) (đpcm)
b/ Vì AB = AC => ΔABC cân => \(\widehat{ABC}=\widehat{ACB}\)
mà \(\widehat{ABC}+\widehat{ABM}=180^o\) (kề bù)
\(\widehat{ACB}+\widehat{ACN}=180^o\) (kề bù)
=> \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có:
BM = CN (gt)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)
AB = AC (gt)
=> ΔABM = ΔACN (c.g.c)
=> AM = AN(2 cạnh tương ứng) (đpcm)
c/ Vì ΔABI = ΔACI (ý a)
=> \(\widehat{AIB}=\widehat{AIC}\) (2 cạnh tương ứng)
mà \(\widehat{AIB}+\widehat{AIC}=180^o\) (kề bù)
=> \(\widehat{AIB}=\widehat{AIC}=\frac{180^o}{2}=90^o\)
=> \(AI\perp BC\left(đpcm\right)\)
ta có hình vẽ sau:
a) xét \(\Delta ABI\) và \(\Delta ACI\) có:
\(AB=AC\left(gt\right)\)
\(I\) là cạnh chung
\(BI=CI\left(gt\right)\)
\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)
vì \(\Delta ABI=\Delta ACI\) nên \(\widehat{ABI}=\widehat{ACI}\) (hai góc tương ứng)
\(I\in BC\left(gt\right)\) và \(BI=CI\left(gt\right)\) nên \(AI\) là tia phân giác của \(\widehat{BAC}\)
c) \(I\) là trung điểm của \(BC\) (1)
\(\widehat{AIB}+\widehat{AIC}=180^o\) (2)
Từ (1) và (2) \(\Rightarrow AI\perp BC\)
\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) hay \(\widehat{AIM}=\widehat{AIN}\) ( vì \(N;M\in BC\) và \(CN=BM\left(gt\right)\))
\(\Rightarrow IM=IN\) (hai cạnh tương ứng)
b) xét \(\Delta AIM\) và \(\Delta AIN\) có:
\(AI\) là cạnh chung
\(\widehat{AIM}=\widehat{AIN}=90^o\) \(\left(cmt\right)\)
\(IM=IN\left(cmt\right)\)
\(\Rightarrow\Delta AIM=\Delta AIN\left(c.g.c\right)\)
\(\Rightarrow AM=AN\) (2 cạnh tương ứng)
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác