Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do AB = AC nên tam giác ABC cân tại A
Mà AI là đường trung tuyến (do I là trung điểm của BC)
=> AI cũng là đường trung trực của tam giác ABC
Lại có: MB = MC (theo giả thiết) => M cách đều 2 đầu mút B và C của đoạn thẳng BC
=> M \(\in\)AI
nên A , M , I thẳng hàng
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD
Do đó: ΔAMB=ΔCMD
b: ta có: ΔAMB=ΔCMD
=>\(\widehat{MAB}=\widehat{MCD}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
c: Xét ΔIBM và ΔKDM có
IB=KD
\(\widehat{IBM}=\widehat{KDM}\)(hai góc so le trong, AB//CD)
BM=MD
Do đó: ΔIBM=ΔKDM
=>\(\widehat{IMB}=\widehat{KMD}\)
mà \(\widehat{IMB}+\widehat{IMD}=180^0\)(hai góc kề bù)
nên \(\widehat{KMD}+\widehat{IMD}=180^0\)
=>I,M,K thẳng hàng
a) Xét Δ AMC và Δ AMB có:
AC = AB (gt)
AM là cạnh chung
MC = MB (gt)
⇒Δ AMC = Δ AMB (c.c.c)
⇒∠CAM = ∠BAM (2 góc tương ứng)
⇒AM là phân giác BAC ( đpcm)
b) Xét t/g ANC và t/g ANB có:
AC = AB (gt)
AN là cạnh chung
NC = NB (gt)
⇒ Δ ANC = Δ ANB (c.c.c)
⇒ ∠CAN = ∠BAN (2 góc tương ứng)
⇒ AN là phân giác BAC
Như vậy, AM và AN đều là phân giác của BAC
Nên AM và AN trùng nhau hay A,M,N thẳng hàng (đpcm)
c)Vì Δ ANC = Δ ANB (câu b)
⇒ ∠ANC = ∠ANB (2 góc tương ứng)
Mà ∠ANC + ∠ANB = 180o ( kề bù)
Nên ∠ANC = ∠ANB = 90o
⇒AN vg BC hay MN vg BC
Mà CN = BN (gt)
Do đó, MN là đường trung trực của BC ( đpcm)
\(a,\text{Do }\Delta ABC\text{ cân tại A}\Rightarrow AB=AC\)
\(\text{Xét }\Delta ABD\text{ và }\Delta ACE\text{ có:}\)
\(AB=AC\left(cmt\right)\left(1\right)\)
\(\widehat{A}\text{ chung}\left(2\right)\)
\(AD=AE\left(gt\right)\left(3\right)\)
\(\text{Từ (1),(2) và (3)}\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\left(\text{2 góc tương ứng}\right)\)
\(\text{Vậy }\widehat{ABD}=\widehat{ACE}\)
\(b,+\text{)}\widehat{ABD}=\widehat{ACE}\left(\text{câu a}\right)\text{ hay }\widehat{EBI}=\widehat{DCI}\)
\(+\text{)}\text{Ta có: }AE+BE=AB,AD+CD=AC\)
\(\text{Mà }AE=AD\left(\text{câu a}\right),AB=AC\left(\text{câu a}\right)\)
\(\Rightarrow BE=CD\)
\(+\text{)Xét }\Delta EBI\text{ có:}\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(4\right)\)
\(\text{Xét }\Delta DCI\text{ có:}\widehat{DCI}+\widehat{CID}+\widehat{IDC}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(5\right)\)
\(\text{Từ (4) và (5)}\Rightarrow\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=\widehat{DCI}+\widehat{CID}+\widehat{IDC}\)
\(\text{Mà }\widehat{EBI}=\widehat{DCI}\left(cmt\right),\widehat{BIE}=\widehat{CID}\left(\text{đối đỉnh}\right)\)
\(\Rightarrow\widehat{IEB}=\widehat{IDC}\)
\(\text{Xét }\Delta EBI\text{ và }\Delta DCI\text{ có:}\)
\(\widehat{IEB}=\widehat{IDC}\left(cmt\right)\left(6\right)\)
\(BE=CD\left(cmt\right)\left(7\right)\)
\(\widehat{EBI}=\widehat{DCI}\left(cmt\right)\left(8\right)\)
\(\text{Từ (6),(7) và (8)}\Rightarrow\Delta EBI=\Delta DCI\left(g.c.g\right)\)
\(\Rightarrow BI=CI\left(\text{2 cạnh tương ứng}\right)\)
\(\Rightarrow\Delta IBC\text{ cân tại I}\)
\(\text{Vậy }\Delta IBC\text{ là tam giác cân}\)
\(c,+\text{)Do M là trung điểm của BC}\left(gt\right)\Rightarrow BM=CM\)
\(\)\(\text{Xét }\Delta ABM\text{ và }\Delta ACM\text{ có:}\)
\(AB=AC\left(\text{câu a}\right)\left(9\right)\)
\(AM\text{ chung}\left(10\right)\)
\(BM=CM\left(cmt\right)\left(11\right)\)
\(\text{Từ (9),(10) và (11)}\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\left(\text{2 góc tương ứng}\right)\)
\(\Rightarrow AM\text{ là tia phân giác }\widehat{BAC}\)
\(+\text{)}\Delta EBI=\Delta DCI\left(\text{câu b}\right)\)
\(\Rightarrow EI=DI\left(\text{2 cạnh tương ứng}\right)\)
\(\text{Xét }\Delta EAI\text{ và }\Delta DAI\text{ có:}\)
\(EI=DI\left(cmt\right)\left(12\right)\)
\(AI\text{ chung}\left(13\right)\)
\(AE=AD\left(gt\right)\left(14\right)\)
\(\text{Từ (12),(13) và (14)}\Rightarrow\Delta EAI=\Delta DAI\left(c.c.c\right)\)
\(\Rightarrow\widehat{EAI}=\widehat{DAI}\left(\text{2 góc tương ứng}\right)\)
\(\Rightarrow AI\text{ là tia phân giác }\widehat{EAD}\)
\(\text{Hay }AI\text{ là tia phân giác }\widehat{BAC}\left(\text{do E}\in AB,D\in AC\right)\left(15\right)\)
\(\text{Mà }AM\text{ là tia phân giác }\widehat{BAC}\left(cmt\right)\left(16\right)\)
\(\text{Từ (15) và (16)}\Rightarrow A,I.M\text{ thẳng hàng}\left(đpcm\right)\)
a: Xét ΔAMC và ΔANB có
AM=AN
\(\widehat{MAC}\) chung
AC=AB
Do đó: ΔAMC=ΔANB
b: Ta có: ΔAMC=ΔANB
nên AM=AN
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a: Xét ΔAMC và ΔANB có
AM=AN
\(\widehat{MAC}\) chung
AC=AB
Do đó: ΔAMC=ΔANB
b: Ta có: ΔAMC=ΔANB
nên AM=AN
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: Xét ΔMBC và ΔNCB có
MB=NC
BC chung
MC=NB
Do đó:ΔMBC=ΔNCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
=>IB=IC
hay I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Ta có: DB=DC
nên D nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,D thẳng hàng
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(2)
Ta có: IB=IC
nên I nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,M,I thẳng hàng