Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ đường cao AH vuông góc vs BC(H thuộc BC)
\(sinB=\dfrac{AH}{AB}\Rightarrow AH=66,7\\ sinC=\dfrac{AH}{AC}\Rightarrow AC=68\)
=>đáp án A
\(\overrightarrow{AB}.\overrightarrow{CB}+\overrightarrow{AC}.\overrightarrow{BC}=12\)
\(\Leftrightarrow\overrightarrow{BC}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=12\)
\(\Leftrightarrow\overrightarrow{BC}.\overrightarrow{BC}=12\)
\(\Rightarrow BC^2=12\Rightarrow BC=2\sqrt{3}\)
d/ Gọi P là trung điểm AB \(\Rightarrow P\left(3;\frac{1}{2}\right)\)
Trung trực của AB vuông góc AB nên nhận (2;1) là 1 vtpt
Phương trình trung trực AB:
\(2\left(x-3\right)+1\left(y-\frac{1}{2}\right)=0\Leftrightarrow4x+2y-13=0\)
Trung trực AC qua N và vuông góc AC nên nhận \(\left(1;-2\right)\) là 1 vtpt
Pt trung trực AC:
\(1\left(x-\frac{3}{2}\right)-2\left(y-1\right)=0\Leftrightarrow2x-4y+1=0\)
Tâm đường tròn ngoại tiếp là giao điểm 2 trung trực nên tọa độ là nghiệm:
\(\left\{{}\begin{matrix}4x+2y-13=0\\2x-4y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=\frac{3}{2}\end{matrix}\right.\)
e/ \(AB=\sqrt{5}\) ; \(AC=\sqrt{5}\) ; \(BC=\sqrt{10}\)
\(\Rightarrow AB^2+AC^2=BC^2\Rightarrow\Delta ABC\) vuông tại A
\(\Rightarrow cosB=\frac{AB}{BC}=\frac{\sqrt{5}}{\sqrt{10}}=\frac{1}{\sqrt{2}}\Rightarrow B=45^0\)
b/ Gọi M là trung điểm BC \(\Rightarrow M\left(\frac{5}{2};\frac{3}{2}\right)\Rightarrow\overrightarrow{AM}=\left(\frac{1}{2};\frac{3}{2}\right)=\frac{1}{2}\left(1;3\right)\)
\(\Rightarrow\) Đường thẳng AM nhận \(\left(3;-1\right)\) là 1 vtpt
Phương trình AM:
\(3\left(x-2\right)-1\left(y-0\right)=0\Leftrightarrow3x-y-6=0\)
c/N là trung điểm AC nên \(N\left(\frac{3}{2};1\right)\)
Đường thẳng MN song song BC nên nhận \(\left(1;3\right)\) là 1 vtpt
Phương trình MN:
\(1\left(x-\frac{3}{2}\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-\frac{9}{2}=0\)
Chọn B
B. 6,8cm