Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi \(I\left(x;y\right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)
\(\Rightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-3-x\right)^2+\left(6-y\right)^2=\left(1-x\right)^2+\left(-2-y\right)^2\\\left(-3-x\right)^2+\left(6-y\right)^2=\left(6-x\right)^2+\left(3-y\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-5\\3x-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Câu 1: Chưa đủ dữ kiện để làm. Bạn xem lại đề.
Câu 2: Gọi tọa độ điểm H(a,b)
Ta có: \(\overrightarrow{AH}=(a-3; b-2); \overrightarrow{BC}=(1;8); \overrightarrow{BH}=(a-4; b+1); \overrightarrow{AC}=(2; 5)\)
Vì H là trực tâm tam giác ABC nên:
\(\left\{\begin{matrix} \overrightarrow{AH}.\overrightarrow{BC}=0\\ \overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a-3+8(b-2)=0\\ 2(a-4)+5(b+1)=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+8b=19\\ 2a+5b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{-71}{11}\\ b=\frac{35}{11}\end{matrix}\right.\)
Chắc điểm D kia là C?
\(\overrightarrow{AB}=\left(4;14\right)=2\left(2;7\right)\)
\(\Rightarrow\) Đường thẳng AB nhận \(\left(7;-2\right)\) là 1 vtpt
Phương trình AB:
\(7\left(x-2\right)-2\left(y-1\right)=0\Leftrightarrow7x-2y-12=0\)
\(\overrightarrow{CB}=\left(2;6\right)=2\left(1;3\right)\Rightarrow\) đường cao AH vuông góc BC nên nhận (1;3) là 1 vtpt
Phương trình AH:
\(1\left(x-2\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-5=0\)
\(\overrightarrow{AC}=\left(2;8\right)=2\left(1;4\right)\Rightarrow\) đường thẳng AC nhận (4;-1) là 1 vtpt
Phương trình AC: \(4\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow4x-y-7=0\)
Gọi \(M\left(x;y\right)\) là điểm bất kì thuộc phân giác góc A
\(\Rightarrow d\left(M;AB\right)=d\left(M;AC\right)\)
\(\Rightarrow\dfrac{\left|7x-2y-12\right|}{\sqrt{7^2+\left(-2\right)^2}}=\dfrac{\left|4x-y-7\right|}{\sqrt{4^2+\left(-1\right)^2}}\)
\(\Leftrightarrow\sqrt{17}\left|7x-2y-12\right|=\sqrt{53}\left|4x-y-7\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}7\sqrt{17}x-2\sqrt{17}y-12\sqrt{17}=4\sqrt{53}x-\sqrt{53}y-7\sqrt{53}\\7\sqrt{17}x-2\sqrt{17}y-12\sqrt{17}=-4\sqrt{53}x+\sqrt{53}y+7\sqrt{53}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(7\sqrt{17}-4\sqrt{53}\right)x+\left(\sqrt{53}-2\sqrt{17}\right)y-12\sqrt{17}+7\sqrt{53}=0\\\left(7\sqrt{17}+4\sqrt{53}\right)x-\left(\sqrt{53}+2\sqrt{17}\right)y-12\sqrt{17}-7\sqrt{53}=0\end{matrix}\right.\)
Đây là pt 2 phân giác trong và ngoài của góc A
Bài 2:
a: Xét ΔOHA vuông tại A và ΔOHB vuông tại B có
OH chung
\(\widehat{AOH}=\widehat{BOH}\)
Do đó: ΔOHA=ΔOHB
Suy ra: HA=HB
hay ΔHAB cân tại H
b: Xét ΔOAB có
OH là đường cao
AD là đường cao
OH cắt AD tại C
Do đó: C là trực tâm của ΔOAB
Suy ra: BC\(\perp\)Ox
c: \(\widehat{HOA}=\dfrac{60^0}{2}=30^0\)
Xét ΔOHA vuông tại A có
\(\cos HOA=\dfrac{OA}{OH}\)
\(\Leftrightarrow OA=\dfrac{\sqrt{3}}{2}\cdot4=2\sqrt{3}\left(cm\right)\)
Mình vẫn chưa thấy vai trò của $M,N$ trong bài toán này. Bạn xem lại đề.
d/ Gọi P là trung điểm AB \(\Rightarrow P\left(3;\frac{1}{2}\right)\)
Trung trực của AB vuông góc AB nên nhận (2;1) là 1 vtpt
Phương trình trung trực AB:
\(2\left(x-3\right)+1\left(y-\frac{1}{2}\right)=0\Leftrightarrow4x+2y-13=0\)
Trung trực AC qua N và vuông góc AC nên nhận \(\left(1;-2\right)\) là 1 vtpt
Pt trung trực AC:
\(1\left(x-\frac{3}{2}\right)-2\left(y-1\right)=0\Leftrightarrow2x-4y+1=0\)
Tâm đường tròn ngoại tiếp là giao điểm 2 trung trực nên tọa độ là nghiệm:
\(\left\{{}\begin{matrix}4x+2y-13=0\\2x-4y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=\frac{3}{2}\end{matrix}\right.\)
e/ \(AB=\sqrt{5}\) ; \(AC=\sqrt{5}\) ; \(BC=\sqrt{10}\)
\(\Rightarrow AB^2+AC^2=BC^2\Rightarrow\Delta ABC\) vuông tại A
\(\Rightarrow cosB=\frac{AB}{BC}=\frac{\sqrt{5}}{\sqrt{10}}=\frac{1}{\sqrt{2}}\Rightarrow B=45^0\)
b/ Gọi M là trung điểm BC \(\Rightarrow M\left(\frac{5}{2};\frac{3}{2}\right)\Rightarrow\overrightarrow{AM}=\left(\frac{1}{2};\frac{3}{2}\right)=\frac{1}{2}\left(1;3\right)\)
\(\Rightarrow\) Đường thẳng AM nhận \(\left(3;-1\right)\) là 1 vtpt
Phương trình AM:
\(3\left(x-2\right)-1\left(y-0\right)=0\Leftrightarrow3x-y-6=0\)
c/N là trung điểm AC nên \(N\left(\frac{3}{2};1\right)\)
Đường thẳng MN song song BC nên nhận \(\left(1;3\right)\) là 1 vtpt
Phương trình MN:
\(1\left(x-\frac{3}{2}\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-\frac{9}{2}=0\)