K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

Ta có:  A B 2 + A C 2 = B C 2 ( 3 2 + 4 2 = 5 2 = 25 )

Suy ra: tam giác ABC vuông tại A

Xét Δ ABC và Δ MNP có:

Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Suy ra: Δ ABC và ΔMNP đồng dạng với nhau.

Áp dụng định lí Pyta go vào tam giác MNP có:

N P 2 = M N 2 + M P 2 = 6 2 + 8 2 = 100 nên NP = 10cm

Chọn đáp án D

a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(MP=\sqrt{10^2-6^2}=8\left(cm\right)\)

Xet ΔABC vuông tại A và ΔMNP vuông tại M co

AB/MN=AC/MP

=>ΔABC đồng dạng vơi ΔMNP

b: ΔABC đồng dạng vơi ΔMNP

=>goc A=góc M; góc B=góc N; gócC=góc P

23 tháng 3 2016

Áp dụng định lý Py-ta-go đối với ▲MPQ vuông tại M ta có:

\(MQ^2=PQ^2-MP^2\)

\(\Rightarrow MQ=10^2-6^2=100-36=64\)

\(\Rightarrow MQ=8\left(cm\right)\)

Xét ▲ABC và ▲MPQ ta có :

\(\frac{AB}{MP}=\frac{AC}{MQ}=\frac{1}{2}\left(\frac{3}{6}=\frac{4}{8}\right)\)

<A=<M=90

Do đó hai tam giác đồng dạng

23 tháng 3 2016

- Đâu cần phiền phức vậy! Có hai góc A và M cùng =90 độ lập tỉ số 2 cặp cạnh đã cho độ dài => 2 tỉ số bằng nhau => Tam giác đồng dạng trường hợp c.g.c .

Bài 2: 

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

c: \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)

20 tháng 2 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=5cm\)

Theo định lí Pytago tam giác MNP vuông tại N

\(NP=\sqrt{MP^2-MN^2}=6cm\)

b, Xét tam giác ABC và tam giác NPM có 

^BAC = ^PNM = 900

\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)

Vậy tam giác ABC ~ tam giác NPM ( c.g.c ) 

a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có 

AB/NP=AC/NM

Do đó: ΔABC\(\sim\)ΔNPM