Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi AI là đường cao kẻ từ đỉnh A của tam giác. Gọi M là trực tâm của tam giác ABC
Khi đó tọa độ điểm M thỏa mãn hệ phương trình
Đ ư ờ n g t h ẳ n g A I q u a M ( 7 3 ; - 2 3 ) v à n h ậ n n → ( 4 ; 5 ) l à m V T P T .
Hay 4x+ 5y – 6= 0
Gọi I là trực tâm \(\Rightarrow\) I là giao điểm BH và CK
Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}2x+y-4=0\\x-y-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{7}{3}\\y=-\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{IA}=\left(\frac{5}{3};-\frac{4}{3}\right)=\frac{1}{3}\left(5;-4\right)\)
Đường thẳng AI nhận \(\left(4;5\right)\) là 1 vtpt
Phương trình AI:
\(4\left(x-4\right)+5\left(y+2\right)=0\Leftrightarrow4x+5y-6=0\)
H là trực tâm của tam giác nhỉ.
A có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x-2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\Rightarrow A\left(-1;0\right)\)
B có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Rightarrow B\left(0;2\right)\)
H có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}x-2y+1=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow H\left(0;\dfrac{1}{2}\right)\)
Phương trình đường thẳng AC: \(y=0\)
Phương trình đường thẳng CH: \(x+2y-1=0\)
C có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}y=0\\x+2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\Rightarrow H\left(1;0\right)\)
Do B thuộc BH nên tọa độ có dạng \(B\left(b;2b+3\right)\)
Gọi E là trung điểm AB \(\Rightarrow E\left(\dfrac{b+1}{2};b+3\right)\)
Do E thuộc CE nên:
\(\dfrac{b+1}{2}+b+3-2=0\Rightarrow b=-1\) \(\Rightarrow B\left(-1;1\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(-2;-2\right)\Rightarrow\) đường thẳng AB nhận (1;-1) là 1 vtpt
Phương trình AB:
\(1\left(x-1\right)-1\left(y-3\right)=0\Leftrightarrow x-y+2=0\)
E(x;-x+2)
Theo đề, ta có: \(\left\{{}\begin{matrix}x=\dfrac{1+x_B}{2}\\-x+2=\dfrac{3+y_B}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_B+1=2x\\y_B+3=-2x+4\end{matrix}\right.\)
=>B(2x-1;-2x+1)
vecto AB=(2x-2;-2x-2)
BH: 2x-y+3=0
=>VTPT là (2;-1)
=>VTCP là (1;2)
Theo đề, ta có: 1(2x-2)+2(-2x-2)=0
=>2x-2-4x-4=0
=>-2x-6=0
=>x=-3
=>B(5;-5)
vecto AB=(4;-8)
=>VTPT là (8;4)
Phương trình AB là:
8(x-5)+4(y+5)=0
=>2(x-5)+y+5=0
=>2x-10+y+5=0
=>2x+y-5=0
Hai đường thẳng AH và BH cắt nhau tại H nên tọa đô của H là nghiệm hệ
Vậy H( 2; 0)
Do CH vuông góc với AB mà AB: 7x – y + 4= 0 nên CH có
Suy ra; phương trình CH:
1(x-2) + 7( y-0) = 0
Hay x+ 7y -2= 0
Chọn D.