Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do lỗi Online Math nên mình không gửi câu trả lời được. Mình phải dùng paint .
Vì D đối xứng với M qua trục AB
⇒ AB là đường trung trực của MD.
⇒ AD = AM (t/chất đường trung trực) (1)
Vì E đối xứng với M qua trục AC
⇒ AC là đường trung trực của ME
⇒ AM = AE (t/chất đường trung trực) (2)
Từ (1) và (2) suy ra: AD = AE
tự kẻ hình :
AB là đường trung trực của MD (gt)
=> AM = AD (đl) (1)
AC là đường trung trực của EM (gt)
=> AE = AM (đl) (2)
(1)(2) => AE = AD
a. Vì D đối xứng với M qua trục AB
\(\Rightarrow\) AB là đường trung trực MD.
\(\Rightarrow\) AD = AM (tính chất đường trung trực) (1)
\(\Rightarrow\) Vì E đối xứng với M qua trục AC
\(\Rightarrow\) AC là đường trung trực của ME
\(\Rightarrow\) AM = AE ( tính chất đường trung trực) (2)
\(\Rightarrow\) Từ (1) và (2) suy ra : AD = AE
b ) AD = AM suy ra \(\Delta AMD\) cân tại A có \(AB\perp MD\)
nên AB cũng là đường phân giác của góc MAD
\(\Rightarrow\widehat{A_1}=\widehat{A}_2\)
AM = AE suy ra \(\Delta AME\) cân tại A có \(AC\perp ME\) nên AC cũng là đường phân giác của \(\widehat{MAE}\)
\(\Rightarrow\widehat{A}_3=\widehat{A}_4\)
\(\widehat{DAE}=\widehat{A}_1+\widehat{A}_2+\widehat{A}_3+\widehat{A}_4\)
\(=2\left(\widehat{A}_2+\widehat{A}_3\right)=2\widehat{BAC}=2.70^o=140^o\)
Chúc bạn học tốt !!!
Theo giả thiết ta có:
+ D đối xứng với M qua AB.
+ E đối xứng với M qua AC.
+ A đối xứng với A qua AB, AC.
⇒ AD đối xứng với AM qua AB, AE đối xứng với AM qua AC.
Áp dụng tính chất đối xứng ta có:
⇒ AD = AE ⇒ (đpcm).
Theo giả thiết ta có:
+ D đối xứng với M qua AB.
+ E đối xứng với M qua AC.
+ A đối xứng với A qua AB, AC.
AD đối xứng với AM qua AB, AE đối xứng với AM qua AC.
⇒ Áp dụng tính chất đối xứng ta có:
⇒ (đpcm).
a) D đx với m qua AB
=> AB là trung trực của MD
=> AD=AM
E đx với M qua AC
=> AM=AE
=> AD=AE
b) AD=AM => tam giác ADM cân
=>góc DAB =góc MAB
tam giác AME cân
=> góc MAC= góc CAE
do đó: DAB+MAB+MAC+CAE=2(MAB+MAC)=2.70=140 độ
hay góc DAE=140 độ
a: Ta có: D đối xứng với M qua AB
nên AD=AM(1)
Ta có: E đối xứng với M qua AC
nên AM=AE(2)
Từ (1) và (2) suy ra AD=AE
a: ta có: M và D đối xứng nhau qua BA
nên AB là đường trung trực của MD
=>AM=AD
=>ΔAMD cân tại A
mà AB là đường cao
nênAB là phân giác của góc MAD(1)
Ta có: M và E đối xứng nhau qua AC
nên AC là đường trung trực của ME
=>AM=AE
=>ΔAME cân tại A
mà AC là đường cao
nên AC là phân giác của góc MAE(2)
Ta có: AD=AM
AE=AM
Do đó: AE=AD
b: Từ (1) và (2) suy ra \(\widehat{EAD}=\widehat{EAM}+\widehat{DAM}=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)=180^0\)
hay E,A,D thẳng hàng