Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAEI vuông tại I và ΔAHI vuông tại I có
AI chung
IE=IH(gt)
Do đó: ΔAEI=ΔAHI(hai cạnh góc vuông)
Suy ra: AE=AH(hai cạnh tương ứng)(1)
Xét ΔAHK vuông tại K và ΔAFK vuông tại K có
AK chung
KH=KF(gt)
Do đó: ΔAHK=ΔAFK(hai cạnh góc vuông)
Suy ra: AH=AF(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra AE=AF(đpcm)
b) Ta có: ΔAEI=ΔAHI(cmt)
nên \(\widehat{EAI}=\widehat{HAI}\)(hai góc tương ứng)
hay \(\widehat{EAB}=\widehat{BAH}\)
Ta có: ΔAHK=ΔAFK(cmt)
nên \(\widehat{HAK}=\widehat{FAK}\)(hai góc tương ứng)
hay \(\widehat{HAC}=\widehat{FAC}\)
Ta có: \(\widehat{EAB}+\widehat{HAB}+\widehat{HAC}+\widehat{FAC}=\widehat{EAF}\)
\(\Leftrightarrow\widehat{EAF}=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)
\(\Leftrightarrow\widehat{EAF}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
\(\Leftrightarrow\widehat{EAF}=2\cdot\widehat{BAC}\)
\(\Leftrightarrow\widehat{EAF}=2\cdot60^0=120^0\)
Xét ΔAEF có AE=AF(cmt)
nên ΔAEF cân tại A(Định nghĩa tam giác cân)
\(\Leftrightarrow\widehat{AEF}=\widehat{AFE\:}=\dfrac{180^0-\widehat{EAF}}{2}\)(Số đo của các góc ở đáy trong ΔAEF cân tại A)
\(\Leftrightarrow\widehat{AEF}=\widehat{AFE}=\dfrac{180^0-120^0}{2}\)
hay \(\widehat{AEF}=30^0\); \(\widehat{AFE}=30^0\)
Vậy: \(\widehat{EAF}=120^0\); \(\widehat{AEF}=30^0\); \(\widehat{AFE}=30^0\)
Xét ΔAIE vuông tại I và ΔAIH vuông tại I có
AH chung
IE=IH
Do đó: ΔAIE=ΔAIH
Xét ΔAHF có
AK là đường cao
AK là đường trung tuyến
Do đó: ΔAHF cân tại A
=>AH=AF
Ta có: ΔAEI=ΔAHI
=>AE=AH và \(\widehat{EAI}=\widehat{HAI}\)
Ta có: AE=AH
AH=AF
Do đó: AE=AF
Ta có: \(\widehat{EAI}=\widehat{HAI}\)
mà AI nằm giữa AE,AH
nên AI là phân giác của góc EAH
=>\(\widehat{EAH}=2\cdot\widehat{IAH}\)
Ta có; ΔAHF cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAF
=>\(\widehat{HAF}=2\cdot\widehat{HAC}\)
Ta có: \(\widehat{EAF}=\widehat{EAH}+\widehat{FAH}\)
\(=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
\(=2\cdot\widehat{BAC}=2\cdot45^0=90^0\)
a: Xét ΔAHE có
AI là đường cao
AI là đường trung tuyến
Do đó: ΔAHE cân tại A
Suy ra: AE=AH(1)
Xét ΔAHF có
AK là đường cao
AK là đường trung tuyến
Do đó: ΔAHF cân tại A
Suy ra: AF=AH(2)
Từ (1) và (2) suy ra AF=AE
a, Vì AI là đg cao và trung tuyến tg AHE nên tg AHE cân tại A \(\Rightarrow AE=AH\)
Vì AK là đg cao và trung tuyến tg AHF nên tg AHF cân tại A \(\Rightarrow AF=AH\)
Vậy \(AE=AF\)
b, Vì AI, AK là đg cao của 2 tg cân nên chúng cũng là phân giác của 2 tg đó
\(\Rightarrow\widehat{EAF}=\widehat{EAH}+\widehat{HAF}=2\left(\widehat{KAH}+\widehat{IAH}\right)=2\cdot\widehat{BAC}=120^0\)
Vì \(AE=AF\) nên tg AEF cân tại A
Vậy \(\widehat{AEF}=\widehat{AFE}=\dfrac{180^0-\widehat{EAF}}{2}=30^0\)
Vì \(AK⊥FH;FK=KH\) nên \(AK\)là đường trung trực của \(FH\)
\(\Rightarrow AF=AH\left(TC\right)\)(1)
Vì \(AI⊥HE;IH=IE\) nên \(AI\)là đường trung trực của \(HE\)
\(\Rightarrow AH=AE\)(2)
Từ (1);(2) \(\Rightarrow AF=AE\left(=AH\right)\) (đpcm)
a: Xét ΔAEH có
AI là đường cao
AI là đường trung tuyến
Do đó: ΔAEH cân tại A
hay AH=AE(1)
Xét ΔAFH có
AK là đường cao
AK là đường trung tuyến
Do đó: ΔAFH cân tại A
hay AH=AF(2)
Từ (1) và (2)suy ra AE=AF
b: \(\widehat{EAF}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot60^0=120^0\)
nên \(\widehat{AEF}=\widehat{AFE}=30^0\)
sao A1=A2=A3=A4 ?