K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2021

a) Xét Δ AHC và ΔBKC có

góc BKC = AHC =90o

Góc C chung 

=> Δ AHC ∼ ΔBKC (g-g) 

=>\(\dfrac{HC}{KC}=\dfrac{AC}{BC}\)(tsđd)

=>\(\dfrac{HC}{AC}=\dfrac{AC}{BC}\)

xét Δ CHK và Δ CAB có

\(\dfrac{HC}{AC}=\dfrac{AC}{BC}\)(cmt)

Góc C chung 

=> Δ CHK ∼ Δ CAB (c-g-c)

=>\(\dfrac{KC}{BC}=\dfrac{KH}{AB}\)(tsđd)

=>KC.AB =KH.BC

12 tháng 5 2021

tại sao HC/AC = AC/BC vậy

 

 

25 tháng 3 2019

a)Hai tam giác vuông  \(\Delta AHC\approx\Delta BKC\)vì có chung góc nhọn C

b) Vì tam giác AHC đồng dạng tam giác BKC nên

\(\frac{AH}{BK}=\frac{HC}{KC}=\frac{AC}{BC}=\frac{4}{3}\)

Theo định lý Pytago ta có 

\(AH=\sqrt{8^2-3^2}=\sqrt{55}\)

\(\frac{AH}{BK}=\frac{\sqrt{55}}{BK}=\frac{4}{3}\)

\(\Rightarrow BK=\frac{3\sqrt{55}}{4}\)

Theo Pytago ta có

\(KC=\sqrt{6^2-\left(\frac{3\sqrt{55}}{4}\right)^2}=\frac{9}{4}\left(cm\right)\)

\(KA=8-\frac{9}{4}=\frac{23}{4}\left(cm\right)\)

a: Xét ΔAHC vuông tại Hvà ΔHKC vuông tại K có

góc C chung

=>ΔAHC đồng dạng với ΔHKC

b: Xet ΔHAC vuông tại H có HK là đường cao

nên HK^2=AK*KC

c: \(S_{AHC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

\(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)

CK=4^2/5=3,2cm

=>AK=1,8cm

=>HK=2,4cm

\(S_{HKC}=\dfrac{1}{2}\cdot2.4\cdot3.2=1.2\cdot3.2=3.84\left(cm^2\right)\)

a: Xét ΔAHC vuông tại Hvà ΔHKC vuông tại K có

góc C chung

=>ΔAHC đồng dạng với ΔHKC

b: Xet ΔHAC vuông tại H có HK là đường cao

nên HK^2=AK*KC

c: \(S_{AHC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

\(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)

CK=4^2/5=3,2cm

=>AK=1,8cm

=>HK=2,4cm

\(S_{HKC}=\dfrac{1}{2}\cdot2.4\cdot3.2=1.2\cdot3.2=3.84\left(cm^2\right)\)

4 tháng 4 2020

a) Xét tam giác HAB và tam giác ABC có:

Góc AHB= góc BAC (= 900 )

B> là góc chung

 tam giác HAB ~ tam giác ABC (g.g)

b) Xét ΔΔ ABC vuông tại A: BC= AB2 + AC2
Hay BC2 = 122 + 162
BC2 = 144 + 256 = 400
=> BC = √400 = 20 (cm)
Ta có : Δ HAB  Δ ABC
=> \(\frac{HA}{AB}=\frac{AB}{BC}\)
Hay \(\frac{HA}{12}=\frac{12}{20}\)
=> AH = \(\frac{12.12}{20}=7,2\) cm

c) 

Ta có

DE là tia phân giác của góc ADB trong tam giác DAB,

áp dụng t/c tia phân giác thì\(\frac{DA}{DB}=\frac{AE}{EB}\)

DG là tia phân giác cảu góc CDA trong tam giác CDA.

áp dụng t/c tia phân giác thì \(\frac{CD}{DA}=\frac{CF}{FA}\)

VẬy \(\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{DA}{DB}.\frac{DB}{DC}.\frac{CD}{DA}=1\)(dpcm)