K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

A B C E D H F

a) Xét \(\Delta\)AFH và \(\Delta\)ADB có:

\(\widehat{BAD}\) chung

\(\widehat{AFH} = \widehat{ADB}\) (=90o)

=> \(\Delta\)AFH đồng dạng \(\Delta\)ADB (g-g)

b) Xét \(\Delta\)FHB và \(\Delta\)EHC có:

\(\widehat{HFB} = \widehat{HEC}\) (=90o)

\(\widehat{FHB} = \widehat{EHC}\) ( đối đỉnh)

=> \(\Delta\)FHB đồng dạng \(\Delta\)EHC (g-g)

=> \(\dfrac{HB}{HC}=\dfrac{HF}{HE}\) => HB.HE = HF.HC =>đpcm

c) Từ câu b ta có: \(\dfrac{HB}{HC}=\dfrac{HF}{HE}\) => \(\dfrac{HF}{HB}=\dfrac{HE}{HC}\)

Xét \(\Delta\)FHE và \(\Delta\)BHC có:

\(\dfrac{HF}{HB}=\dfrac{HE}{HC}\) (chứng minh trên)

\(\widehat{FHE} = \widehat{CHB}\) ( đối đỉnh)

=>\(\Delta\)FHE đồng dạng \(\Delta\)BHC (g-g)

=> \(\widehat{BEF} = \widehat{BCF}\) => đpcm

a: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

Do đó;ΔAEH\(\sim\)ΔADC

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)

Do đó:ΔHFB\(\sim\)ΔHEC

Suy ra: HF/HE=HB/HC

hay \(HF\cdot HC=HB\cdot HE\)

a: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

Do đó; ΔAEH\(\sim\)ΔADC

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)

Do đó: ΔHFB\(\sim\)ΔHEC
Suy ra: HF/HE=HB/HC

hay \(HF\cdot HC=HB\cdot HE\)

27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;

a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co

góc B chung

=>ΔBDA đồng dạng vói ΔBFC

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng vói ΔACB

c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

=>ΔAEH đồng dạng vói ΔADC

=>AD*AH=AE*AC

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc ECH chung

=>ΔCEH đồng dạng vói ΔCFA

=>CH*CF=CE*CA

=>AH*AD+CH*CF=CA^2

23 tháng 4 2021

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)

13 tháng 4 2019

a. Xét  AFC và  AEB có:

\(\widehat{BAC}\) chung

\(\widehat{AFC}=\widehat{AEB}=90^0\)

 AFC đồng dạng với  AEB(g.g)

⇒ \(\frac{AF}{AE}=\frac{AC}{AB}\)

 \(AB.AF=AE.AC\)

\(\frac{AF}{AE}=\frac{AC}{AB}\Rightarrow\frac{AF}{AC}=\frac{AE}{AB}\)

Xét  AEF và  ABC có :

\(\widehat{BAC}\) chung

\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)

 AEF đồng dạng với  ABC (c.g.c)

Mấy câu kia bạn tự làm nốt đi nhá.