Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( Tự vẽ hình )
a, Xét tam giác ABE và tam giác ACF có :
Góc A chung
Góc E = Góc F = 90 độ
=> Tam giác ABE đồng dạng với tam giác ACF ( g.g)
=> AB/AC = AE/AF
Hay AF . AB = AE . AC
b, AB/AC = AE/AF ( CM trên )
=> AB/AE = AC/AF
Xét tam giác AEF và tam giác ABC có :
AB/AE = AC/AF ( CM trên )
Góc A chung
=> Tam giác AEF đồng dạng với tam giác ABC ( c.g.c )
=> Góc AEF = Góc ABC
c, Ta có : HF vuông góc với AB; DM vuông góc với AB => HF// DM
=> AF/AM = AH/AD ( Theo định lý Ta lét )
Lại có : FE// MN => AF/AM = AE/AN ( Theo định lý Ta lét )
=> AH/AD = AE/AN
=> HE // DN ( Theo định lý Ta lét đảo )
Mà HE vuông góc với AC => DN vuông góc với AC
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
Do đó: ΔAEB\(\sim\)ΔAFC
Suy ra: AE/AF=AB/AC
hay \(AE\cdot AC=AB\cdot AF\)
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc EAF chung
Do đó: ΔAEF\(\sim\)ΔABC
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: AE/AF=AB/AC
=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ABC
c: ΔAEF đồng dạng với ΔABC
=>\(\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{1}{4}\)
=>\(S_{ABC}=4\cdot S_{AEF}\)
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB\cdot AF=AC\cdot AE\)(đpcm)
b)Sửa đề: \(\widehat{BAD}=\widehat{BED}\)
Xét tứ giác BDEA có
\(\widehat{BEA}=\widehat{BDA}\left(=90^0\right)\)
\(\widehat{BEA}\) và \(\widehat{BDA}\) là hai góc cùng nhìn cạnh BA
Do đó: BDEA là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay \(\widehat{BAD}=\widehat{BED}\)(hai góc cùng nhìn cạnh BD)
Tgiac ABE và ACF có g BAC chung, g AFC=g BEA
=> tg ABE~tg ACF(gg)=> AB/AC=AE/AF
=> AB.AF=AC.AE
Xét tg AEF và ABC có g BAC chung, AE/AF=AB/AC(cm ý a)
=> tg AEF~tgABC(gg)
=> G ABC=g AEF