K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2020

a) ta có AB=AC

=> TAM GIÁC ABC CÂN TẠI A

=> B=C

XÉT TAM GIÁC ABM VÀ TAM GIÁC ACM CÓ

                         AB  =  AC(GT)

                          B   =  C (CMT)

                        BM=MC(M LÀ TRUNG ĐIỂM CỦA BC)

=> TAM GIÁC ABM = TAM GIÁC ACM (C-G-C)

6 tháng 1 2020

B) XÉT \(\Delta AMC\)VÀ \(\Delta EMB\)

\(BM=MC\left(GT\right)\)

\(\widehat{AMC}=\widehat{EMB}\)(ĐỐI ĐỈNH)

\(MA=ME\left(GT\right)\)

\(\Rightarrow\Delta AMC=\Delta EMB\left(C-G-C\right)\)

\(\Rightarrow\widehat{BEA}=\widehat{CAE}\)HAI GÓC TƯƠNG ỨNG

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU

\(\Rightarrow AC//BE\)

8 tháng 1 2020

Tự vẽ hình nha

a) Xét tam giác AMB và tam giác AMC có:

AM chung

góc BAM = góc CAM ( AM là tia p.g góc BAC )

AB=AC(gt)

=> tam giác AMC = tam giác AMC (c-g-c) Đpcm

b) Vì AB=AC => tam giác ABC cân tại A, mà AM là tia phân giác của góc A => M là trung điểm BC

Xét tam giác AMB và tam giác DMC có

AM=DM (gt)

AMB=DMC ( đối đỉnh )

BM=CM ( M là trung điểm BC )

=> tam giác AMB = tam giác DMC (c-g-c)

=> góc BAM = góc CDM ( 2 góc tương ứng )

mà góc BAM và góc CDM ở vị trí so le trong

=>AB // CD

10 tháng 1 2020

i lam dc cau c) va cau d) ko??

26 tháng 11 2015

Tự vẽ hình được ko? Mình ko làm được phần c đâu nhé!

a) Xét \(\Delta AMBvà\Delta CMDcó:\)

AM=MC

góc AMB=góc DMC

BM=MD

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Xét \(\Delta ADMvà\Delta BMCcó:\)

AM=MC

góc AMD=góc DMC

BM=MD

\(\Rightarrow\Delta ADM=\Delta CBM\left(c-g-c\right)\)

\(\Rightarrow\)góc DAM=góc BCM (cặp góc tương ứng)

Mà 2 góc này ở vị trí so le trong nên AD//BC

 

26 tháng 12 2017

A B C M D

*Xét ΔABM và ΔACM có:

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BM=MC\left(M.l\text{à}.trung.\text{đ}i\text{ểm}.c\text{ủa}.BC\right)\\AM.c\text{ạnh}.chung\end{matrix}\right.\)

⇒ ΔABM = ΔACM (c - c - c)

*Vì ΔABM = ΔACM (cmt)

\(\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng) Ta có: \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù) ⇒ \(\widehat{AMB}=\widehat{AMC}\) = \(\dfrac{180^o}{2}=90^o\) ⇒ AM ⊥ BC *Xét ΔAMB và ΔDMC có: \(\left\{{}\begin{matrix}AM=MD\left(gt\right)\\\widehat{AMB}=\widehat{DMC}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BM=MC\left(gt\right)\end{matrix}\right.\) ⇒ ΔAMB = ΔDMC (c - g - c) ⇒ \(\widehat{ABM}=\widehat{DCM}\) (hai góc tương ứng) Mà hai góc này ở vị trí so le trong ⇒ AB // CD