K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017
  1. 22222222​​
  2. 2
  3. 3
  4. 3
  5. 3
  6. 3
  7. 3
  8. 3
  9. 3
  10. 3
29 tháng 7 2018

a, \(BH\perp AD\left(gt\right)\Rightarrow\widehat{BHA}=\widehat{BHD}=90^0\)

\(CK\perp AD\left(gt\right)\Rightarrow\widehat{AKC}=90^0\)

Xét \(\Delta BHD\)và \(\Delta CKD\) có: 

                         \(\widehat{BHD}=\widehat{CKD}=90^0\)

                          \(\widehat{BDH}=\widehat{CDK}\) (đối đỉnh)

Do đó: \(\Delta BHD\infty\Delta CKD\left(g.g\right)\)

b, Xét \(\Delta ABH\) và \(\Delta ACK\) có:

                     \(\widehat{BAH}=\widehat{CAK}\) (vì AD là tia p/g của góc BAC)

                       \(\widehat{AHB}=\widehat{AKC}=90^0\)

Do đó: \(\Delta ABH\infty\Delta ACK\left(g.g\right)\)

Suy ra: \(\frac{AB}{AH}=\frac{AC}{AK}\) hay  \(AB.AK=AC.AH\)

C, \(\Delta ABH\infty\Delta ACK\left(cmt\right)\Rightarrow\frac{BH}{CK}=\frac{AB}{AC}\left(1\right)\) 

\(\Delta BHD=\Delta CKD\left(cmt\right)\Rightarrow\frac{DH}{DK}=\frac{BH}{CK}\left(2\right)\)

Từ (1) và (2), ta được: \(\frac{DH}{DK}=\frac{BH}{CK}=\frac{AB}{AC}\)

d, Gọi giao điểm giữa FM và BH là O và giao điểm giữa FM và CK là I.

Bạn chứng minh được tam giác BOF tại O và tam giác CIE vuông tại I

\(\Delta BOM=\Delta CIM\left(ch.gn\right)\Rightarrow BO=CI\)(2 cạnh tương ứng)

\(AD//FM\left(gt\right)\Rightarrow\hept{\begin{cases}\widehat{BAD}=\widehat{F}\\\widehat{DAC}=\widehat{IEC}\end{cases}}\)(đồng vị)

Suy ra: \(\widehat{F}=\widehat{IEC}\)

Mà \(\hept{\begin{cases}\widehat{F}+\widehat{FBO}=90^0\\\widehat{IEC}+\widehat{ICE}=90^0\end{cases}}\)

Nên \(\widehat{FBO}=\widehat{ICE}\)

Chứng minh được \(\Delta FBO=\Delta ECI\left(g.c.g\right)\Rightarrow BF=CE\)(2 cạnh tương ứng)

Chúc bạn học tốt.

20 tháng 3 2016

H, K để làm gì?

Trog tg ADC có ME // AD => CM/CE = CD/CA (Ta-let) (1)

trog tg BMF có AD // MF => BM/BF = BD/BA (2)

theo t/c đường pg trog tg ABC có CD/CA = BD/BA (3)

Từ (1), (2) và (3) => CM/CE = BM/CF, mà CM = BM => CE = BF

22 tháng 3 2016

Hồ sĩ tiến , để lm các câu a, b, c bn ak. Đây là câu cuối nhg mih o biết lm

5 tháng 4 2023

xét ΔAKH và Δ AMD, có

\(\widehat{A}=\widehat{A}\\ \widehat{K}=\widehat{M}=90^o\\ \Rightarrow\text{ }\Delta AKH\sim\Delta AMD\left(g-g\right)\)

\(\Leftrightarrow\dfrac{AH}{AD}=\dfrac{AK}{AM}\)(1)

xét ΔAKE và Δ AMN, có:

\(\widehat{A}\) chung

\(\widehat{E}=\widehat{N}\) đồng vị

\(\Rightarrow\text{ }\Delta AKE\sim\Delta AMN\left(g-g\right)\)

\(\Leftrightarrow\dfrac{AE}{AN}=\dfrac{AK}{AD}\)(2)

xét ΔAHE và Δ ADN, có:

\(\widehat{A}\) chung 

từ (1) và (2) ta suy ra \(\dfrac{AH}{AD}=\dfrac{AE}{AN}\\ \Rightarrow\Delta AHE~\Delta ADN\)

\(\Leftrightarrow\widehat{E}=\widehat{N}=90^o\Rightarrow DN\perp AC\left(đpcm\right)\)

P/S: chúc bạn học tốt nhe, mình vẽ hình xong nhìn muốn nội thương=))

 

18 tháng 12 2019

22 tháng 2 2021

bác cho e xem giải câu này vs

 

1 tháng 10 2021

Xét tư giác AEDF có

DF//AE; DE//AF => AEDF là hình bình hành

Gọi O là giao của AD và EF => IA=ID và IE=IF

Xét tg AEFF có

IE=IF => AI là đường trung tuyến của tg AEF

mà AI là phân giác của \(\widehat{BAC}\)

=> tg AEF cân tại A (tg có đường trung tuyến đồng thời là đường phân giác thì tg đó là tg cân) \(\Rightarrow AD\perp EF\) (trong tg cân đường trung tuyến đồng thời là đường cao)

=> AEDF là hình thoi (Hình bh có hai đường chéo vuông góc nhau là hình thoi

=> EA=ED

Xét tg AEI và tg DEI có

EA=ED

IA=ID

EI chung 

=> tg AEI=tgDEI (c.c.c) \(\Rightarrow\widehat{AEF}=\widehat{DEF}\) => EF là phân giác của \(\widehat{AED}\)

9 tháng 3 2020

sollution