Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
góc EAH chung
=>ΔAEH đồng dạng với ΔADC
Xét ΔAFH vuông tại F và ΔADB vuông tại D có
góc FAH chung
=>ΔAFH đồng dạng với ΔADB
b: ΔAEH đồng dạng với ΔADC
=>AE/AD=AH/AC
=>AE*AC=AD*AH
ΔAFH đồng dạng với ΔADB
=>AF/AD=AH/AB
=>AF*AB=AH*AD=AE*AC
c: BH*BE+CH*CF
=BD*BC+CD*BC
=BC^2
Xét \(\Delta HEA\)và \(\Delta HDB\)có:
\(\widehat{AHE}=\widehat{BHD}\)(đối đỉnh)
\(\widehat{AEH}=\widehat{BDH}\)(đường cao AD vuông với BC và BE vuông với AC)
\(\Rightarrow\Delta HEA\)đồng dạng với \(\Delta HDB\)(g.g)
\(\Rightarrow\frac{HA}{HB}=\frac{HE}{HD}\)\(\Rightarrow HA.HD=HB.HE\)\((1)\)
Chứng minh tương tự, ta có \(\Delta CEH\)đồng dang với \(\Delta BFH\)
\(\Rightarrow\frac{HC}{HB}=\frac{HE}{HF}\)\(\Rightarrow HC.HF=HB.HE\)\((2)\)
Từ \((1)\)và \((2)\)\(\Rightarrow HA.HD=HB.HE=HC.HF\)(đpcm)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
Do đo: ΔABE\(\sim\)ΔACF
Suy ra: AB/AC=AE/AF
hay \(AE\cdot AC=AB\cdot AF\left(1\right)\)
Xét ΔAFH vuông tại F và ΔADB vuông tại D có
\(\widehat{DAB}\) chung
Do đo: ΔAFH\(\sim\)ΔADB
Suy ra: AF/AD=AH/AB
hay \(AF\cdot AB=AH\cdot AD\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot AD=AF\cdot AB=AE\cdot AC\)
b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)
Do đó: ΔHFB\(\sim\)ΔHEC
SUy ra: HF/HE=HB/HC
hay \(HF\cdot HC=HB\cdot HE\left(3\right)\)
Xét ΔHFA vuông tại F và ΔHDC vuông tại D có
\(\widehat{FHA}=\widehat{DHC}\)
Do đó: ΔHFA\(\sim\)ΔHDC
Suy ra: HF/HD=HA/HC
hay \(HF\cdot HC=HA\cdot HD\left(4\right)\)
Từ (3) và (4) suy ra \(HA\cdot HD=HB\cdot HE=HF\cdot HC\)