K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C N M 1 2

giả thiết: CN vuông góc với AN , góc A1= góc A2, M là tđ

( Hình vẽ chỉ mang t/c minh họa)

Xét tam giác ANC vuông tại N có M là trung điểm AC=> AM=MN=MC (luông đúng khi A thay đổi)

=> tam giác AMN cân tại M => góc A2 = góc ANM

Mà A1=A2 (AN là phân giác góc BAC)=> A1=ANM(so le trong)=> MN//AB

Xét tam giác ABC có M là trung điểm của AC và MN//AB(cmt)=> MN đi qua trung điểm của BC

Vậy....

4 tháng 9 2018

16 tháng 7 2020

A A A B B B C C C D D D E E E N N N O O O I I I H H H M M M

a) Xét \(\Delta_vMDB\) và \(\Delta_vNEC\) có :

BD = CE(đầu đề ghi BD = BE là sai rồi nhá)

\(\widehat{B}=\widehat{C}\)(tam giác ABC cân tại A)

=> \(\Delta_vMDB=\Delta_vNEC\)(cgv - gn)

=> DM = EN(hai cạnh tương ứng)

b) Xét \(\Delta_vMDI\) và \(\Delta_vNEI\)có :

DM = EN(theo câu a)

\(\widehat{MDI}=\widehat{NEI}\)(đối đỉnh)

=> \(\Delta_vMDI=\Delta_vNEI\left(cgv-gn\right)\)

=> IM = IN(hai cạnh tương ứng)

=> BC cắt MN tại I

=> I là tđ của MN

c) Gọi H là chân đường vuông góc kẻ từ A xuống BC

Xét \(\Delta_vAHB\) và \(\Delta_vAHC\)có :

AB = AC(tam giác ABC cân tại A)

AH chung

=> \(\Delta_vAHB=\Delta_vAHC\left(ch-cgv\right)\)

=> \(\widehat{HAB}=\widehat{HAC}\)

Gọi O là giao điểm của AH với đường thẳng vuông góc với MN kẻ từ I 

Xét tam giác OAB và tam giác OAC có :

OA chung

AB = AC(tam giác ABC cân tại A)

góc B = góc C(tam giác ABC cân tại A)

=> tam giác OAB = tam giác OAC(c.g.c)

=> góc OBC = góc OCA (1)

Xét tam giác vuông OIM và tam giác vuông OIN có :

OI chung

IM = IN(theo câu b)

=> tam giác vuông OIM = tam giác vuông OIN(hai cạnh góc vuông)

=> OM = ON(hai cạnh tương ứng)

Xét tam giác OBM và tam giác OCN có :

OM = ON(cmt)

OB = OC(tam giác OAB = tam giác OAC)

BM = CN(tam giác MDB = tam giác NEC)

=> tam giác OBM = tam giác OCN(c.c.c)

=> góc OBM = góc OCM  (2)

Từ (1) và (2) => góc OCA = góc OCN = 90 độ , do đó \(OC\perp AC\)

Vậy điểm O cố định

Câu a, DM = EN chứ k phải DM = ED

16 tháng 7 2020

AB=AC mà

2 tháng 5 2019

B C I H F E A

a)Ta có: BAI=CAI (AI là đường phân giác BAC)

Do:FH//AI=>CFH=CAI và BAI=AEF( đồng vị)

Mà:CFH=AFE(2 góc đối đỉnh)

Suy ra: AFE=AEF

Xét \(\Delta\)AFE:AFE=AEF=>\(\Delta\)AFE cân tại A=>Đường trung trực của EF đồng thời là đường cao

Hay:Đường trung trực của EF đi qua A

b) Như đã nói ở câu a:Đường trung trực của EF đồng thời là đường cao, giả sử ấy là AM

Ta có:AMF=90

Mà FH//AI=>AMF+MAI=180=>MAI=90=>AM\(\perp\)AI

Hay đường trung trực của EF vuông góc với AI

c)Do AI cố định nên đường trung trực của EF cố định

Mà \(\Delta\)AFE cân nên đường trung trực của EF đồng thời là đường trung tuyến ứng với EF

Hay đường trung tuyến ứng với EF cố định