Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (chứng minh trên)
Suy ra:
Hay
Trong ΔBAC, ta có:
MN //AC (chứng minh trên)
Và
Vậy
Trong △ BAC, ta có: AM là đường phân giác của (BAC)
Suy ra: (tỉnh chất đường phân giác) (1)
CN là đường phân giác của (BCA)
Suy ra: (tỉnh chất đường phân giác) (2)
Lại có: AB = CB = a (gt)
Từ (1), (2) và (gt) suy ra:
Trong △ BAC, ta có:
Suy ra: MN // AC (theo định lí đảo của định lí Ta-lét).
a) Xét \(\Delta ABM\)và \(\Delta CBN\)có :
\(\widehat{B}\)là góc chung
\(\frac{AB}{BC}=\frac{NB}{MB}\)( Do tam giác ABC cân tại B , \(AB=BC\) và \(\widehat{A}=\widehat{C}\))
\(\Rightarrow\Delta ABM\)\(\infty\)\(\Delta CBN\)\(\left(c.g.c\right)\)
b) do \(\Delta ABM\infty\Delta BCN\left(c.g.c\right)\)(chứng minh câu a)
ta có tỉ lệ : \(\frac{BM}{BC}=\frac{BN}{AB}\)=MN/AC(dpcm)
c) bạn tự làm nka câu này dễ