Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAIB và ΔAIC có
AB=AC
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
b: Ta có: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét tứ giác ABEC có
I là trung điểm của AE
I là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: AB//EC
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
a: Sửa đề: Chứng minh ΔABM=ΔACM
Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
c: Xét ΔIAB và ΔICE có
IA=IC
\(\widehat{AIB}=\widehat{CIE}\)(hai góc đối đỉnh)
IB=IE
Do đó: ΔIAB=ΔICE
=>\(\widehat{IAB}=\widehat{ICE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
Ta có: AB//CE
AB//CD
CD,CE có điểm chung là C
Do đó: D,C,E thẳng hàng
Ta có: AB=CE(ΔIAB=ΔICE)
AB=CD(ΔIAB=ΔIDC)
Do đó: CE=CD
mà D,C,E thẳng hàng
nên C là trung điểm của DE
a: Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AI chung
IB=IC
Do đó: ΔAIB=ΔAIC
a: Xét ΔADE có AD=AE
nên ΔADE cân tại A
Xét ΔABC có
AD/AB=AE/AC
Do đó: DE//BC
b: Xét ΔAMB và ΔAMC có
AM chung
AB=AC
BM=CM
Do đó: ΔABM=ΔACM
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Tự kẻ hình nha
- Vì tam giác ABC vuông tại A (gt)
=> CA vuông góc với AB (tc)
=> tam gics ADC vuông tại A (tc)
- Xét tam giác vuống ABC và tam giác vuông ADC, có:
+ Chung AC
+ AB = AD ( A là trung điểm BD)
=> Tam giác vuông ABC = tam giác vuông ADC (2 cạnh góc vuông)
- Vì tam giác vuông ABC = tam giác vuông ADC (cmt)
=> CB = CD (2 cạnh tương ứng)
=> tam gics CBD cân (định nghĩa)
- Vì A là trung điểm BD (gt)
=> CA là trung tuyến tam giác CBD (dấu hiệu)
- Vì K là trung điểm BC (gt)
=> DK là trung tuyến tam gics CBD (dấu hiệu)
Mà CA và DK cắt nhau tại M (gt)
=> M là trọng tâm tam giác CBD (tc)
=> MC = 2/3 CA (tc)
=> MC = 2MA (đpcm)
- Gọi d là đường trung trực của AC
- Gọi N là giao điểm của AC và d
- Vì d là đường trung trực của AC (cách gọi)
=> d vuông góc với AC
=> góc QNC = 90o (tc) 1
=> AN = CN
- Vì tam giác ADC vuông tại A (cmt)
=> góc DAC = 90o (tc) 2
Từ 1 và 2 ta có:
=> DA // QN (đồng vị)
- Xét tam giác vuông QNA và tam giác vuông QNC, có:
+ Chung QN
+ AN = CN (cmt)
=> tam giác vuông QNA = tam giác vuông QNC (2 cạnh góc vuông)
=> góc AQN = góc CQN (2 góc tương ứng)
=> QA = QC (2 cạnh tương ứng)
- Vì DA // QN (cmt)
=> góc DAQ = góc AQN (so le trong)
=> góc CQN = góc ADQ (đồng vị)
Mà góc AQN = góc CQN (cmt)
=> góc DAQ = góc ADQ
=> tam giác QAD cân tại Q (dấu hiệu)
=> QA = QD (định nghĩa)
Mà QA = QC (cmt)
=> QD = QC
=> MQ là trung tuyến của DC
Mà M là trọng tâm của tam giác CBD (cmt)
=> BQ là trung tuyến tam giác CBD (tc)
=> B, M, Q thằng hàng (đpcm)
\(\text{#TNam}\)
`a,` Vì Tam giác `ABC` cân tại `A -> AB = AC,`\(\widehat{B}=\widehat{C}\)
Xét Tam giác `AIB` và Tam giác `AIC` có:
`AB = AC (CMT)`
\(\widehat{B}=\widehat{C}\) `(CMT)`
`IB = IC (g``t)`
`=> \text {Tam giác AIB = Tam giác AIC (c-g-c)}`
Hnhu câu `b,` bạn ghi thiếu yêu cầu rồi nhé!
`c,` Xét Tam giác `AEI` và Tam giác `MEC` có:
`EA = EC (g``t)`
\(\widehat{AEI}=\widehat{MEC}\) `(\text {2 góc đối đỉnh})`
`EM = EI (g``t)`
`=> \text {Tam giác AEI = Tam giác MEC (c-g-c)}`
`->`\(\widehat{AIE}=\widehat{CME}\) `(\text {2 góc tương ứng})`
Mà `2` góc này nằm ở vị trí sole trong `-> \text {AI // CM}`
Vì Tam giác `ABI =` Tam giác `ACI (a)`
`->`\(\widehat{AIB}=\widehat{AIC}\) `(\text {2 góc tương ứng})`
Mà `2` góc này nằm ở vị trí kề bù
`->`\(\widehat{AIB}+\widehat{AIC}=180^0\)
`->`\(\widehat{AIB}=\widehat{AIC}=\) `180/2=90^0`
`-> AI \bot BC`
Mà `\text {AI // CM} -> MC \bot BC`