Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: trên nửa mặt phẳng bờ AB có chứa điểm G, có tam giác ABD. Nối D với F Ta có:
Góc FBA= góc ABC-góc FBC Góc ABC =(1800 - BAC)/2=1400 :2=700
=> góc FBC=góc EBA=300 => FBA= 700 -300 =400
=>góc FBA= góc BAI=400 =>tam giác AFB cân tại F
=>FA=FB
Xét tam giác BDF và tam giác ADF có:
DF cạnh chung
FB=FA
BD=AD
=>tam giác BDF= tam giác ADF(c-c-c)
=>góc ADF= góc BDF = góc ABD/2= 300 Mà góc EBA= 30 0
=>góc ADF= góc ABE=300
Ta có tam giác ABC cân tại A co AH là đường cao =>AD la p.giác của tam giác ABC
=>góc BAH= góc CAH=góc BAC/2=200 => góc DAF= góc BAE=200
Xét tam giác BAE và tam giác DAI có
Góc DAI= góc BAD
AB=AD
Góc ADF= góc ABD
=>tam giác BAD = tam giác DAF(g-c-g)
=>AE=AF ( cặp cạnh tương ứng)
Bài làm:
hình bạn tự vẽ nha:
Ta có: trên nửa mặt phẳng bờ AB có chứa điểm G, có tam giác ABD. Nối D với F
Ta có: Góc FBA= góc ABC-góc FBC
Góc ABC =(180 độ-góc BAC)/2=140 độ:2=70 độ
Suy ra góc FBC=góc EBA=30 độ
Suy ra FBA= 70 độ-30 độ=40 độ
Suy ra góc FBA= góc BAI=40 độ
Suy ra tam giác AFB cân tại F
Suy ra FA=FB
Xét tam giác BDF và tam giác ADF có:
DF cạnh chung
FB=FA
BD=AD
Suy ra tam giác BDF= tam giác ADF(c-c-c)
Suy ra góc ADF= góc BDF = góc ABD/2= 30 độ
Mà góc EBA= 30 độ
Suy ra góc ADF= góc ABE=30 độ
Ta có tam giác ABC cân tại A
AH là đường cao suy ra AD p.giác của tam giác ABC
Suy ra góc BAH= góc CAH=góc BAC/2=20 độ
Suy ra góc DAF= góc BAE=20 độ
Xét tam giác BAE và tam giác DAI có
Góc DAI= góc BAD
AB=AD
Góc ADF= góc ABD
suy ra tam giác BAD= tam giác DAF(g-c-g)
Suy ra AE=AF( cặp cạnh tương ứng)
trên nửa mặt phẳng bờ AB có chứa điểm C, vẽ tam giác ABD. nối D với F
có : FBA^ = ABC^ - FBC^
ABC^ = ( 180o - BAC^)/2 = 140 độ : 2 = 70 độ
góc FBC = góc EBA = 30 độ
=> góc FBA = 70 độ - 30 độ = 40 độ
Mà góc BAC = 40 độ => góc FBA = góc BAF = 40 độ
=> tam giác AFB cân tại F
=> FA = FB
Xét tam giác BDF và tam giác ADF có:
FB = FA
Cạnh FD chung => tam giác .. = tam giác .. ( c.g.c)
BD = AD
=> ADF = BDF = ABD/2 = 60 độ/2 = 30 độ
mà EBA = 30 độ => ADF = ABE = 30 độ
lại có tam giác abc cân tại a. ah đường cao => AH đồng thời p.g tam giác ABC
=> BAH = CAH = BAC/2 = 40 độ/2 = 20 độ
DAF = BAD - BAC = 60 độ - 40 độ = 20 độ => DÀ = BAE = 20 độ
xét tam giác BAE vè tam giác DAF có:
DAF = BAE
AB = AD
ADF = ABD
=> tam giác bad = tam giác daf ( g.cg)
=> AE = AF ( 2 cạnh tương ứng)
a: \(\widehat{DAE}=\dfrac{1}{2}\left(\widehat{HAB}+\widehat{HAC}\right)=\dfrac{1}{2}\cdot90^0=45^0\)
b: Xét ΔAEH và ΔAEF có
AE chung
\(\widehat{HAE}=\widehat{FAE}\)
AH=AF
Do đó: ΔAEH=ΔAEF
c: Ta có: ΔAEH=ΔAEF
nên \(\widehat{AHE}=\widehat{AFE}=90^0\)
=>EF⊥AC
mà AC⊥AB
nên EF//AB
Trên nửa mặt phẳng bờ AB có chứa điểm C, Vẽ tam giác đều ABD. Nối D với F.
Ta có: ^FBA=^ABC - ^FBC
^ABC=(180o - ^BAC)/2 = (180o - 40o)/2 = 140o/2=70o
^FBC=^EBA=30o
=> ^FBA=70o-30o=40o. Mà ^BAC=40o (^BAF=40o)=> ^FBA=^BAF=40o=> Tam giác AFB cân tại F
=> FA=FB
Xét tam giác BDF và tam giác ADF có: FB=FA
Cạnh FD chung => Tam giác BDF= Tan giác ADF (c.c.c)
BD=AD
=> ^ADF=^BDF=^ADB/2=60o/2=30o (Do tam giác ABD đều theo cách vẽ)
Mà ^EBA=30o=> ^ADF=^ABE=30o
Lại có: Tam giác ABC cân tại A. AH là đường cao=> AH đồng thời là đường phân giác của tam giác ABC
=> ^BAH=^CAH=^BAC/2=40o/2=20o
^DAF=^BAD - ^BAC=60o-40o (Tam giác ABD đều)=> ^DAF=^BAE=20o
Xét tam giác BAE và tam giác DAF có: ^DAF=^BAE
AB=AD => Tam giác BAE=Tam giác DAF (g.c.g)
^ADF=^ABE
=> AE=AF (2 cạnh tương ứng)=> Tam giác EAF cân tại A=> ^AEF=^AFE=(180o - ^EAF)/2=(180o-20o)/2=160o/2=80o
Vậy góc AEF=80o. Xong!
AEF = 90