Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a/ Ta có AB < BC (5cm < 6cm)
=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)
=> \(\widehat{ABC}< \widehat{A}\)
b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))
Cạnh AD chung
=> \(\Delta ADB\)= \(\Delta ADC\)(c. g. c) (đpcm)
c/ Ta có \(\Delta ABC\)cân tại A
=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)
và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)
=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)
=> F là trung điểm AB (đpcm)
d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)
=> G là trọng tâm \(\Delta ABC\)
và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))
=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)
=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:
\(BG=\sqrt{BD^2+GD^2}\)
=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)
=> \(BG=\sqrt{9+\frac{64}{9}}\)
=> \(BG=\sqrt{\frac{145}{9}}\)
=> BG \(\approx\)4, 01 (cm)
Bạn tự vẽ hình nha!
a.
AB = AC (tam giác ABC cân tại A)
mà AB = 15 nên AC = 15
Tam giác ABC có:
AC < BC (15 < 18)
=> B < A (quan hệ giữa góc và cạnh đối diện)
b.
Xét tam giác ABH và tam giác ACH có:
A1 = A2 (AH là tia phân giác của BAC)
AB = AC (tam giác ABC cân tại A)
B = C (tam giác ABC cân tại A)
=> Tam giác ABH = Tam giác ACH (g.c.g)
c.
AH là tia phân giác của tam giác ABC cân tại A
=> AH là trung tuyến của tam giác ABC
mà BD là trung tuyến của tam giác ABC
=> G là trọng tâm của tam giác ABC.
d.
AH là tia phân giác của tam giác ABC cân tại A
=> AH là trung trực của tam giác ABC
=> H là trung điểm của BC
=> BH = CH = BC/2 = 18/2 = 9
Áp dụng định lí Pytago vào tam giác ABH vuông tại H có:
AB^2 = AH^2 + BH^2
15^2 = AH^2 + 9^2
AH = 12
Ta có:
AG = 2/3 AH (tính chất trọng tâm)
=> AG = 2/3 . 12 = 8
d.
G là trọng tâm của tam giác ABC
=> CE là trung tuyến của tam giác ABC
=> E là trung điểm của AB
=> AE = BE = AB/2
Ta có: AD = CD = AC/2 (BD là trung tuyến của tam giác ABC)
mà AB = AC (tam giác ABC cân tại A)
=> AE = AD
Xét tam giác AEG và tam giác ADG có:
AE = AD (chứng minh trên)
A1 = A2 (AH là tia phân giác của tam giác ABC)
AG là cạnh chung
=> Tam giác AEG = Tam giác ADG
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
a: Xét ΔABI và ΔACI có
AB=AC
góc BAI=góc CAI
AI chung
=>ΔABI=ΔACI
b: ΔACB cân tại A
mà AI là phân giác
nên AI vuông góc BC
c: Xét ΔBAC có
AI,CM là các đườg trung tuyến
AI căt CM tại G
=>G là trọng tâm
=>BG là đường trung tuyến của ΔABC
a, Xét tam giác ABD và AED cs:
AB=AE(gt)
góc BAD=EAD(p.g)
AD: cạnh chung
=> tam giác ABD=AED(c.g.c)
b, từ a=> góc ABD=AED(2 góc t/ứng)
Xét tam giác ABC và AEF cs:
góc ABD=AED(cmt)
AB=AE(gt)
góc A: góc chung
=> tam giác ABC=AEF(g.c.g)
c, từ b=> AC=AF(2 cạnh t/ứng)
Xét tam giác FAM và CAM cs:
AF=AC(cmt)
góc FAM=CAM (gt)
AM: cạnh chung
=> tam giác FAM=CAM(c.g.c)
=>FM=MC(2 cạnh t/ứng)
=> DM là đường trung tuyến của đt FC
Xét tam giác DFC cs:
DM là đường trung tuyến
CN là đường trung tuyến ( vì DN=NF)
Mà DM và CN giao nhau tại G
=> G là trọng tâm của tam giác DFC
=> CG/GN=2( t/c trọng tâm trg tam giác)
Để tớ làm lại cho. Nguyên phần tính BG luôn, cái kia out :))
Ta có tam giác ABC cân tại A => AD vừa là phân giác vừa là đường cao => AD vuông góc BC tại D (bổ sung kí hiệu vô nhé)
Ta có: D là trung điểm BC => BD = CD = BC : 2 = 6 : 2 = 3 (cm)
Xét tam giác ABD vuông tại D có:
\(AD^2+BD^2=AB^2\left(pytago\right)\)
\(AD^2+3^2=5^2\)
\(AD^2=5^2-3^2=25-9=16\)
\(\Rightarrow AD=\sqrt{16}=4\left(cm\right)\)
Vì G là trọng tâm tam giác ABC => \(GD=\frac{1}{3}AD\Leftrightarrow GD=\frac{1}{3}.4=\frac{4}{3}\left(cm\right)\)
Xét tam giác BGD vuông tại D có:
\(GD^2+BD^2=BG^2\left(pytago\right)\)
\(\left(\frac{4}{3}\right)^2+3^2=BG^2\)
\(\frac{97}{9}=BG^2\Leftrightarrow BG=\sqrt{\frac{97}{9}}\approx3,3\left(cm\right)\)
a/ Ta có tam giác ABC cân tại A => AD vừa là đường phân giác vừa là trung tuyến => BD = CD
Xét tam giác ABC có 2 đường trung tuyến AD;BE cắt nhau tại G
=> G là trọng tâm của tam giác ABC
=> CF là đường trung tuyến thứ 3
=> F là trung điểm AB hay FB = FA
b/ Vì tam giác ABC cân tại A => AB = AC = 5 cm
Ta có: \(AE=EC=\frac{AC}{2}=\frac{5}{2}=2,5\left(cm\right)\)(Vì E là trung điểm AC)
Xét tam giác BEC vuông tại E có:
\(BE^2+EC^2=BC^2\left(pytago\right)\)
\(BE^2+2,5^2=6^2\)
\(BE^2=6^2-2,5^2=29,75\)
\(\Rightarrow BE=\sqrt{29,75}\approx5,5\left(cm\right)\)
Vì G là trọng tâm tam giác ABC (cmt)
\(\Rightarrow BG=\frac{2}{3}BE=\frac{2}{3}.5,5\approx3,7\left(cm\right)\)