K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nguyễn Thanh Hằng banj owi

20 tháng 3 2020

A A A B B B C C C D D D E E E I I I K K K 1 2 3 4 2 1 2 1

Tia phân giác của \(\widehat{BIC}\)cắt BC ở K.\(\Delta ABC\)có \(\widehat{A}=60^0\)

Xét \(\Delta ABC\)theo định lí tổng ba góc trong một tam giác

\(\widehat{A}+\left(\widehat{B}+\widehat{C}\right)=180^0\)

=> \(60^0+\left(\widehat{B}+\widehat{C}\right)=180^0\)

=> \(\widehat{B}+\widehat{C}=120^0\)

=> \(\widehat{B_1}+\widehat{C_1}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{120^0}{2}=60^0\)

\(\Delta BIC\)có \(\widehat{B_1}+\widehat{C_1}=60^0\)nên \(\widehat{B_1}+\widehat{C_1}+\widehat{BIC}=180^0\)

=> 600 + \(\widehat{BIC}\)= 1800

=> \(\widehat{BIC}=120^0\)

=> \(\widehat{I_1}=60^0,\widehat{I_4}=60^0\)

IK là tia phân giác của góc BIC nên \(\widehat{I_2}=\widehat{I_3}=60^0\)

Xét \(\Delta BIE\)và \(\Delta BIK\)có :

\(\widehat{B_1}=\widehat{B_2}\)

BI cạnh chung

\(\widehat{I_1}=\widehat{I_2}=60^0\left(cmt\right)\)

=> \(\Delta BIE=\Delta BIK\left(g.c.g\right)\)

=> IE = IK(hai cạnh tương ứng)       (1)

Xét \(\Delta CID\)và \(\Delta CIK\)có :

\(\widehat{C_1}=\widehat{C_2}\)

CI cạnh chung

\(\widehat{I_3}=\widehat{I_4}=60^0\left(cmt\right)\)

=> \(\Delta CID=\Delta CIK\left(g.c.g\right)\)

=> ID = IK(hai cạnh tương ứng)    (2)

Từ (1) và (2) => ID = IE

27 tháng 3 2020

thanks

30 tháng 4 2018

(Bạn tự vẽ hình giùm)

1/ \(\Delta ABC\)vuông tại A

=> \(BC^2=AB^2+AC^2\)(định lý Pitago)

=> \(BC^2=9^2+6^2\)

=> \(BC^2=9+36\)

=> \(BC^2=45\)

=> \(BC=\sqrt{45}\)(cm)

2/ Ta có: \(AE=EC=\frac{AC}{2}=\frac{6}{2}\)= 3 (cm)

\(\Delta BAD\)và \(\Delta EAD\)có: BA = EA (= 3cm)

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác \(\widehat{A}\))

Cạnh AD chung

=> \(\Delta BAD\)\(\Delta EAD\)(c. g. c) (đpcm)

3/ \(\Delta ABC\)và \(\Delta AME\)có: \(\widehat{A}\)chung

AB = AE (\(\Delta BAD\)\(\Delta EAD\))

\(\widehat{ABC}=\widehat{AEM}\)(\(\Delta BAD\)\(\Delta EAD\))

=> \(\Delta ABC\)\(\Delta AME\)(g. c. g) => AC = AM (hai cạnh tương ứng)

nên \(\Delta ACM\)cân tại A

và \(\widehat{A}=90^o\)

=> \(\Delta ACM\)vuông cân tại A (đpcm)

4/ Ta có: \(\widehat{AEM}+\widehat{AME}=90^o\)

=> \(\widehat{AEM}< 90^o\)(vì số đo của \(\widehat{AEM}\)và \(\widehat{AME}\)luôn luôn là số dương)

=> \(\widehat{MEC}>90^o\)(tự chứng minh)

=> \(\Delta MEC\)tù => MC là cạnh lớn nhất => ME < MC

29 tháng 4 2018

áp dụng đ/lý pitago vào tam giác v ABC ta đ̣c BC^2=AB^2+AC^2=3^2+6^2   BC=3căn5 cm                             câu b  xét tam g ABD và tam g AED ta cóAB=AE=3 cm góc BAD=góc EAD(gt) AD chung nên 2 tam g = nhau    câu c góc ABC=góc AEM(VÌgócABD=AED mà AED+AME=90 độ)   xét tam giác ABC và tg AMEcógócA chung AB=AE gócABC=AEM  nên 2 tgiác =nhau suy raAM=AC suy ra tamg AMC v cân    

18 tháng 5 2018

a) ta có: tam giác ABC cân tại A

=> AB = AC = 5 cm ( định lí tam giác cân)

=> AC = 5 cm

=> AC < BC ( 5 cm < 6 cm)

\(\Rightarrow\widehat{ABC}< \widehat{BAC}\) ( quan hệ cạnh và góc đối diện)

b) Xét tam giác ABD và tam giác ACD

có: AB = AC (gt)

góc BAD = góc CAD (gt)

AD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta ACD\left(c-g-c\right)\)

c) Xét tam giác ABC cân tại A

có: AD là đường phân giác góc BAC (gt)

=> AD là đường trung tuyến của BC ( tính chất trong tam giác cân)

mà BE là đường trung tuyến của AC (gt)

AD cắt BE tại G (gt)

=> G là trọng tâm của tam giác ABC ( định lí trọng tâm)

=> CF là đường trung tuyến của AB ( định lí )

=> AF = BF ( định lí đường trung tuyến)

d) Xét tam giác ABC cân tại A

có: AD là đường phân giác của góc BAC (gt)

=> AD là đường cao ứng với cạnh BC ( tính chất tam giác cân)

\(\Rightarrow AD\perp BC⋮D\) ( định lí đường cao)

mà AD là đường trung tuyên của BC ( phần c)

=> BD = CD = BC/2 = 6/2 = 3 cm

=> BD = 3cm

Xét tam giác ABD vuông tại D
có: \(BD^2+AD^2=AB^2\left(py-ta-go\right)\)

thay số: \(3^2+AD^2=5^2\)

                        \(AD^2=5^2-3^2\)

                      \(AD^2=16\)

\(\Rightarrow AD=4cm\)

mà G là trọng tâm của tam giác ABC

AD là đường trung tuyến của BC

\(\Rightarrow\frac{DG}{AD}=\frac{1}{3}\Rightarrow\frac{DG}{4}=\frac{1}{3}\Rightarrow DG=\frac{4}{3}cm\)

Xét tam giác DGB vuông tại D

có: \(DG^2+BD^2=BG^2\left(py-ta-go\right)\)

thay số: \(\left(\frac{4}{3}\right)^2+3^2=BG^2\)

                                \(BG^2=\frac{97}{9}\)

                               \(\Rightarrow BG=\sqrt{\frac{97}{9}}cm\)

mk ko bít kẻ hình trên này, sorry bn nhiều nhé!

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cma)Tính AHb)CM: Tam giác ABH=tam giác ACHc)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE când)CM:AH là trung trực của DEBài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại Ha)Tam giác ADB=tam giác ACEb)Tam giác AHC cânc)ED song song BCd)AH cắt BC tại K, trên HK lất M sao...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm

a)Tính AH

b)CM: Tam giác ABH=tam giác ACH

c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân

d)CM:AH là trung trực của DE

Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H

a)Tam giác ADB=tam giác ACE

b)Tam giác AHC cân

c)ED song song BC

d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông

Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:

a)tam giác ABD=tam giác EBD

b)Tam giác ABE là tam giác cân

c)DF=DC

Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm

a) Tính BC

b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC

c)CM: DE đi qua trung điểm cạnh BC

0
18 tháng 4 2016

a) trung trực c/m cho nó cách đều 2 mút với vuông góc với BC so sánh 2 mút thì c/m 2 cạnh bằng nhau hay lấy của tam giác cân mà làm

b) cái đó gán vào 2 tam giác đơn giản vậy thôi

c) chứng minh 2 cạnh bằng nhau là được dùng tính chất bắc cầu nếu cần thiết

18 tháng 4 2016

ngày mai mik giải cho bạn nhé bài này mik bik giải nhưng hôm nay bận rùi!!!!!