K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

Hình vẽ:

a) Xét \(\Delta\)ABD  và \(\Delta\)ACE có: 

AB = AC ( \(\Delta\)ABC cân )

^BAD = ^CAE ( ^A chung )

^ADB = ^AEC = 90o 

=> \(\Delta\)ABD = \(\Delta\)ACE ( ch - gn )  => AD = AE ( 1)

Xét \(\Delta\)AEI và \(\Delta\)ADI có:

AI chung 

AD = AE ( theo (1) )

^AEI = ^ADI = 90o 

=> \(\Delta\)AEI = \(\Delta\)ADI ( ch - cgv )

b) Từ (a) => ^EAI = ^DAI 

=> AI là phân giác ^EAD 

hay AI là phân giác  trong ^BAC  (2) 

Mặt khác: \(\Delta\)BAC cân tại A có M là trung điểm BC 

=> AM là đường trung tuyến \(\Delta\)ABC 

=> AM là phân giác trong ^BAC (3) 

Từ (2) ; (3) => A; I; M thẳng hàng.

13 tháng 4 2020

Vì 2 đường cao BD và CE cắt nhau tại I nên I là trực tâm của tam giác ABC 

Suy ra AI là đường cao thứ 3 của tam giác ABC, mà tam giác ABC cân tại A nên AI đồng thời là tia phân giác của góc A

Suy ra \(\widehat{EAI}=\widehat{DEI}\)

Xét \(\Delta AEI,\Delta ADI\)có:

\(\widehat{AEI}=\widehat{ADI}=90^0\)

AI chung

\(\widehat{EAI}=\widehat{DEI}\)

=> \(\Delta AEI=\Delta ADI\)(ch-gn)

b) Vì AI là đường cao thứ 3 của tam giác ABC, mà tam giác ABC cân tại A nên AI đồng thời là là trung tuyến ứng với cạnh BC, mà M là trung điểm của BC nên A, I, M thẳng hàng

13 tháng 1 2019

chị làm đây ko bt đúng hay sai đâu nha

xét tam giác ABC có BD vuông góc với AC

                               CE vuông góc với AB 

                               hai đường thẳng này cát nhau tại I 

suy ra I là trực tâm của tam giác ABC

suy ra AI vuông góc với BC(1)

Mặt khác, M là trung điểm của BC=> AM là đường trung tuyến của tam giác ABC

mà trong 1 tam giác cân đường trung tuyến đồng thời là đường cao

<=> AM cũng là đường cao của tam giác ABC

=> AM vuông góc với BC(2)

từ (1)(2) ta có A,I,M thẳng hàng

18 tháng 12 2018

(g là góc)

Xét tg ABC,có:

AB=AC

=>tg ABC cân tại A

=>gABC = gACB

a)Xét tg BEC và tg CDB ,có:

BC:chung

gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)

gEBC = gDCB(cmt)

=>tg BEC = tg CDB(ch-gn)

=>BD=EC

b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)

=>gDBC=gECB(2 góc tương ứng)

=>tg BIC cân tại I

=>BI=CI

mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)

=>EI = DI

c)Xét tg ABC ,có:

AB=AC(gt)

BI=CI(cmt)

BH=CH(vì H là trung điểm của BC)

=>Ba điểm A, I, H thẳng hàng

(g là góc)

Xét tg ABC,có:

AB=AC

=>tg ABC cân tại A

=>gABC = gACB

a)Xét tg BEC và tg CDB ,có:

BC:chung

gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)

gEBC = gDCB(cmt)

=>tg BEC = tg CDB(ch-gn)

=>BD=EC

b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)

=>gDBC=gECB(2 góc tương ứng)

=>tg BIC cân tại I

=>BI=CI

mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)

=>EI = DI

c)Xét tg ABC ,có:

AB=AC(gt)

BI=CI(cmt)

BH=CH(vì H là trung điểm của BC)

=>Ba điểm A, I, H thẳng hàng

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

a: Xét ΔBEC và ΔCDB có 

BE=CD

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đó: ΔBEC=ΔCDB

Suy ra: CE=DB

b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)

nên ΔGBC cân tại G

=>GB=GC

Ta có: GB+GD=BD

GE+GC=CE

mà BD=CE

và GB=GC

nên GD=GE

hay ΔGDE cân tại G

c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)

Ta có: GB=GC

nên G nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,G,M thẳng hàng

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAMD và ΔANB có

AM=AN

MD=NB

AD=AB

Do đó: ΔAMD=ΔANB

18 tháng 1 2017

A B C E D I

cách giải mk gửi bn sau nhé

18 tháng 1 2017

cách giải đây

\(\Delta ABC\)có AB = AC suy ra tam giác ABC tà tam giác cân

xét \(\Delta EBC\)\(\Delta DCB\)

góc B = góc C ( tam giác cân )

BC là cạnh huyền chung

do đó tam giác EBC = tam giác DCB ( cạnh huyền - góc nhọn )

suy ra BD = CE ( 2 cạnh tương ứng )

b)  A B C E D I H

xét \(\Delta AHB\)và \(\Delta AHC\)có \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{B}=\widehat{C}\left(gt\right)\\BH=HC\left(gt\right)\end{cases}}\)

do đó \(\Delta AHB=\Delta AHC\left(c.g.c\right)\\ \Rightarrow\widehat{BAH}=\widehat{CAH}\)( 2 góc tương ứng)

xét tam giác vuông AIE và tam giác vuông AID có

AI là cạnh huyền chung

góc BAH = góc CAH ( cmt)

do đó tam giác AIE = tam giác AID ( cạnh huyền - góc nhọn )

suy ra EI = ID ( 2 cạnh tương ứng )

c)   góc BAH = góc CAH mà tia AH nằm giữa tia AB và AC nên AH là phân giác góc BAC (1)

tam giác AIE = tam giác AID suy ra góc EAI = góc DAI ( 2 góc tương ứng )

mà tia AI nằm giữa 2 tia AE và AD suy ra AI là phân giác góc EAD hay góc BAC (2)

từ (1)  và (2) suy ra ba điểm A;I:H thẳng hàng