Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này khá dễ!!!
ABC=ACB
CBD=BCD
Cộng 2 vế ta được
ABD=ACD
Xét ∆ABD và ∆ACD
AB=AC
ABD=ACD
BD=CD
=> ∆ ABD =∆ ACD
=> BDA=CDA
Mà BDA+ CDA=BDC=60°
2*BDA=60°
BDA=30°
Vì \(\Delta ABC\)cân tại A
=> ABC = ACB
Vì \(\Delta BCD\)đều
=> DBC = DCB = BDC = 60*
Ta có :
ABD = ABC + CBD
ACD = ACB + DCB
=> ABD = ACD
Xét \(\Delta ABD\)và \(\Delta ACD\)có :
AD chung
ABD = ACD
AB = AC
=> \(\Delta ABD=\Delta ACD\)(c.g.c)
=> BDA = CDA = \(\frac{BDC}{2}\)\(=\frac{60}{2}=30\)
=> BDA = 30*
HÌNH TỰ VẼ.
Xét tam giác ABD và tam giác ACD có:
AB=AC (gt)
AD chung
BD=CD (gt)
=> Tam giác ABD= tam giác ACD (c-c-c)
=>\(\widehat{BDA}=\widehat{CDA}\)= 60/2=30
Sửa đề: tính số đo góc BDA
ABC = ACB
CBD = BCD
Cộng 2 vế ta được:
ABD = ACD
Xét tam giác ABD và tam giác ACD có:
AB = AC ( vì tam giác ABC cân )
ABD = ACD ( cmt )
BD = CD ( cmt )
=> Tam giác ABD = tam giác ACD ( c.c.c )
=> BDA = CDA ( 2 góc tương ứng )
Mà BDA + CDA = BDC = 60 độ
2 . BDA = 60 độ
=> BDA = 60 độ : 2 = 30 độ
Đáp số: ...
xét tam giác BAD và tam giác CAD có \(\hept{\begin{cases}BA=AC\left(gt\right)\\BD=CD\left(gt\right)\\ADchung\end{cases}}\)
do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)
suy ra góc BDA = góc CDA
mà \(\widehat{BDA}+\widehat{CDA}=60^o\)\(\Rightarrow\widehat{BDA}=\widehat{CDA}=\frac{60^o}{2}=30^o\)
a: góc ABC=90-30=60 độ
góc DBM=180-45-60=75 độ
góc DCN=45+30=75 độ
b: Xét ΔDNC vuông tại N và ΔDBM vuông tại M có
DC=DB
góc DCN=góc DBM
=>ΔDNC=ΔDBM
=>DM=DN
c: Xét tứ giác AMDN có
góc AMD=góc AND=góc MAN=90 độ
DM=DN
=>AMDN là hình vuông
=>AD là phân giác của góc BAC
Chứng minh tam giác ABD = tam giác ACD (c.c.c) => góc ADB = góc ADC hay DA là tia phân giác của BDC mà góc BDC = 60 độ ( tam giác ADC đều)
=> góc BDA = 30 độ