K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2022

a) Xét ∆BNC và ∆CMB có:
ABC = ACB ( ∆ABC cân tại A )
BC là cạnh chung
BN = CM ( N,M là trung điểm AB,AC và AB=AC )
∆BNC = ∆CMB (c_g_c)
 b) Xét ∆AMB và ∆ANC có:
BAC là góc chung
AN=AM ( giải thích như trên )
AB=AC ( ∆ABC cân tại A )
∆AMB = ∆ANC ( c g c )
Có ^ ABM = ACN
Mà ABC = ACB
KBC = KCB
∆KBC cân tại K                                                                                                                                    c) Ta có:
N là trung điểm AB
M là trung điểm AC
MN là đường trung bình ∆ABC cân
MN // BC xong rùii đó

13 tháng 4 2022

a. +) Tam giác ABC cân tại A:

    => góc B = góc C

    => AB = AC

    => AM + BM = AN + CN

    mà BM và CN là 2 đường trung tuyến của AB và AC

    => AM = BM = AN = CN

    Xét tam giác BNC và tam giác CMB:

  BM = CN (cmt)

  góc B = góc C (cmt)

  BC chung

 => tam giác BNC = tam giác CMB (c-g-c)

 +) Ta có: BM , CN là 2 đường trung tuyến của tam giác ABC, cắt nhau tại I

  => I là trọng tâm của tam giác ABC

  => BI = \(\dfrac{2}{3}BM\)

       CI = \(\dfrac{2}{3}CN\)

  mà BM = CN

 => BI = CI

 => tam giác BIC cân tại I (đpcm)

b. +)Xét tam giác AIB và tam giác AIC:

  AI chung

  AB = AC

  BI = CI

  => tam giác AIB = tam giác AIC (c-c-c)

 => góc BAI = góc CAI (2 góc tương ứng)

  => AI là tia phân giác góc A (1)

  +) Xét tam giác AKB và tam giác AKC:

   AK chung

   AB = AC

   BK = CK (vì K là trung điểm BC)

=> tam giác AKB = tam giác AKC (c-c-c)

  => AK là tia phân giác góc A (2)

 Từ (1) và (2) , suy ra:

  AI trùng AK

=> A, I, K thẳng hàng 

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:


a. Do $AB=AC$ nên tam giác $ABC$ cân tại $A$

Xét tam giác $BNC$ và $CMB$ có:
$BC$ chung

$\widehat{B}=\widehat{C}$ (do tam giác $ABC$ cân tại $A$)

$BN=\frac{AB}{2}=\frac{AC}{2}=CM$ 

$\Rightarrow \triangle BNC=\triangle CMB$ (c.g.c)

b.

Vì $\triangle BNC=\triangle CMB$ nên $\widehat{BCN}=\widehat{CBM}$ hay $\widehat{KCB}=\widehat{KBC}$

$\Rightarrow \triangle KBC$ cân tại $K$ 

$\Rightarrow KB=KC$ (đpcm)

a: Ta có: \(AN=NB=\dfrac{AB}{2}\)

\(AM=MC=\dfrac{AC}{2}\)

mà AB=AC

nên AN=NB=AM=MC

Xét ΔBNC và ΔCMB có 

BN=CM

\(\widehat{NBC}=\widehat{MCB}\)

BC chung

Do đó: ΔBNC=ΔCMB

b: Ta có: ΔBNC=ΔCMB

nên \(\widehat{BCN}=\widehat{CBM}\)

hay \(\widehat{KBC}=\widehat{KCB}\)

Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)

nên ΔKBC cân tại K

8 tháng 4 2016

A B C M N K

a. Ta xét \(\Delta BCNvà\Delta CMB\)

có BC chung

góc B = góc C ( Hai góc ở đáy của tam giác cân)

BN = CM ( BN=\(\frac{1}{2}AB=\frac{1}{2}AC=CM\)

Suy ra tam giác BCN = tam giác CMB ( C-G-C)

b. Ta có tam giác BCN = tam giác CMB

suy ra góc BCN = góc CBM ( hai góc tương ứng)

tam giác BKC có góc KBC= góc KCB nên tam giác BKC cân tại K

c. Xét \(\Delta BKC\)

có BC< KB + KC ( BĐT tam giác) (1)

mà BK = 2.KM, CK = 2.KN mà BK= CK, KM =KN (2)

từ (1) và (2) suy ra BC < KB +KC =4.KM

Vậy BC < 4.KM

13 tháng 7 2017

viết giả thiết kết luận kiểu vay m.n

26 tháng 4 2018

a) Ta có: ΔABC cân tại A

Nên: AB=AC

Mà: CN là đường trung tuyến => NB=NA

       BM là đường trung tuyến => MA=MC

Suy ra: NB=NA=MA=MC

Xét ΔBNC và ΔCMB

Có: BN=CM (cmt)

      \(\widehat{B}\)=\(\widehat{C}\)(do ΔABC cân)

      BC chung

Suy ra: ΔBNC=ΔCMB (c-g-c)

a: Xét ΔBNC và ΔCMB có 

NB=MC

\(\widehat{NBC}=\widehat{MCB}\)

BC chung

Do đó: ΔBNC=ΔCMB

b: Ta có: ΔBNC=ΔCMB

nên \(\widehat{KCB}=\widehat{KBC}\)

=>ΔKBC cân tại K

hay KB=KC

Bạn tự vẽ hình nha!

a.

BN = AN = AB/2 (CN là đường trung tuyến của tam giác ABC => N là trung điểm của AB)

CM = AM = AC/2 (BM là đường trung tuyến của tam giác ABC => M là trung điểm của AC)

mà AC = AB (tam giác ABC cân tại A)

=> BN = CM

Xét tam giác BNC và tam giác CMB có:

BN = CM (chứng minh trên)

ABC = ACB (tam giác ABC cân tại A)

BC là cạnh chung

=> Tam giác BNC = Tam giác CMB (c.g.c)

b.

Tam giác BNC = Tam giác CMB (theo câu a)

=> KBC = KCB (2 góc tương ứng)

=> Tam giác KBC cân tại K

c.

Tam giác KBC cân tại K

=> BK = CK 

=> BK + CK = 2BK = 4KM

mà BK + CK > BC (bất đẳng thức tam giác)

=> BC < 4KM

25 tháng 4 2016

a,Vì CN và BM lần lượt là đường trung tuyến của góc B và C nên N và M lần lượt là trung điểm của AB và AC

\(\Rightarrow\) AN=BN=AB/2 và AM=MC=AC/2 mà AB=AC(tam giác ABC cân tại A)nên suy ra NB=MC

Xét tam giác BNC và tam giác CMB có: NB=MC(cmt);góc ABC= góc ACB(do tam giác ABC cân);cạnh BC chung

\(\Rightarrow\)tam giác BNC=tam giác CMB