Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta xét \(\Delta BCNvà\Delta CMB\)
có BC chung
góc B = góc C ( Hai góc ở đáy của tam giác cân)
BN = CM ( BN=\(\frac{1}{2}AB=\frac{1}{2}AC=CM\)
Suy ra tam giác BCN = tam giác CMB ( C-G-C)
b. Ta có tam giác BCN = tam giác CMB
suy ra góc BCN = góc CBM ( hai góc tương ứng)
tam giác BKC có góc KBC= góc KCB nên tam giác BKC cân tại K
c. Xét \(\Delta BKC\)
có BC< KB + KC ( BĐT tam giác) (1)
mà BK = 2.KM, CK = 2.KN mà BK= CK, KM =KN (2)
từ (1) và (2) suy ra BC < KB +KC =4.KM
Vậy BC < 4.KM
Bạn tự vẽ hình nha!
a.
BN = AN = AB/2 (CN là đường trung tuyến của tam giác ABC => N là trung điểm của AB)
CM = AM = AC/2 (BM là đường trung tuyến của tam giác ABC => M là trung điểm của AC)
mà AC = AB (tam giác ABC cân tại A)
=> BN = CM
Xét tam giác BNC và tam giác CMB có:
BN = CM (chứng minh trên)
ABC = ACB (tam giác ABC cân tại A)
BC là cạnh chung
=> Tam giác BNC = Tam giác CMB (c.g.c)
b.
Tam giác BNC = Tam giác CMB (theo câu a)
=> KBC = KCB (2 góc tương ứng)
=> Tam giác KBC cân tại K
c.
Tam giác KBC cân tại K
=> BK = CK
=> BK + CK = 2BK = 4KM
mà BK + CK > BC (bất đẳng thức tam giác)
=> BC < 4KM
a,Vì CN và BM lần lượt là đường trung tuyến của góc B và C nên N và M lần lượt là trung điểm của AB và AC
\(\Rightarrow\) AN=BN=AB/2 và AM=MC=AC/2 mà AB=AC(tam giác ABC cân tại A)nên suy ra NB=MC
Xét tam giác BNC và tam giác CMB có: NB=MC(cmt);góc ABC= góc ACB(do tam giác ABC cân);cạnh BC chung
\(\Rightarrow\)tam giác BNC=tam giác CMB
a) Ta có: ΔABC cân tại A
Nên: AB=AC
Mà: CN là đường trung tuyến => NB=NA
BM là đường trung tuyến => MA=MC
Suy ra: NB=NA=MA=MC
Xét ΔBNC và ΔCMB
Có: BN=CM (cmt)
\(\widehat{B}\)=\(\widehat{C}\)(do ΔABC cân)
BC chung
Suy ra: ΔBNC=ΔCMB (c-g-c)
a. vì tam giác ABC cân tại A
=> AB = AC
=> góc ABC = góc ACB
BM và CN là 2 đường trung tuyến của tam giác ABC
=> N và M lần lượt là trung điểm của AB và AC
=> AN = BN
AM = CM
mà AB = AC
=> AN = BN = AM = CM
Xét tam giác BNC và tam giác CMB:
BC chung
góc ABC = góc ACB (cmt)
BN = CM (cmt)
=> tam giác BNC = tam giác CMB (c-g-c) (đpcm)
b. tam giác BNC = tam giác CMB (cmt)
=> BM = CN ( 2 cạnh tương ứng)
mà BM giao CN tại K
=> K là trọng tâm của tam giác ABC
=> BK = CK
Xét Δ AKB và Δ AKC:
AK chung
AB = AC (cmt)
BK = CK (cmt)
=> Δ AKB = Δ AKC (c-c-c)
=> góc BAK = góc CAK (2 góc tương ứng)
=> AK là tia phân giác góc BAC
=> AK là đường trung trực của Δ ABC
=> AK ⊥ BC (đpcm)
c. Vì AK (AH) ⊥ BC
=> tam giác ABH vuông tại H
mà AH là đường trung trực của tam giác ABC
=> BH = CH = \(\dfrac{BC}{2}=\dfrac{6}{2}=3cm\)
Áp dùng định lí Py - ta - go vào tam giác ABH:
AB2 = BH2 + AH2
52 = 32 + AH2
AH2 = 52 - 32 = 25 - 9 = 16
=> AK = 4cm (AH > 0)
a) Xét \(\Delta\)BNC và \(\Delta\)CMB:
BN=CM
NBC = MCB
BC chung
\(\Rightarrow\) \(\Delta\)BNC = \(\Delta\)CMB (c.g.c)
b) Ta có: \(\Delta\)BNC = \(\Delta\)CMB (cmt) \(\Rightarrow\) \(BM=CN\)
\(CK=\frac{2}{3}CN\)
\(BK=\frac{2}{3}BM\)
\(\Rightarrow CK=BK\)
\(\Rightarrow\Delta BKC\) cân tại K
c) Bạn xem lại đề nhé, theo hình thì BC > KM, ko phải BC < KM