K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

a: Xét ΔADB và ΔAEC có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔADB=ΔAEC

Suy ra: AD=AE

hay ΔADE cân tại A

16 tháng 12 2021

a)

Chứng minh được tam giác ABD =  tam giác ACE (c-g-c) => AD = AE

Từ đó tam giác ADE cân tại A.

17 tháng 4 2016

Bạn tự vẽ hình nha!

a.

Ta có:

  • B1 + B2 = 180
  • C1 + C2 = 180 

mà B1 = C1 (tam giác ABC cân tại A)

=> B2 = C2 (1)

Xét tam giác ADB và tam giác AEC:

AB = AC (tam giác ABC cân tại A)

B2 = C2 (theo 1)

BD = CE (gt)

=> Tam giác ADB = ACE (c.g.c)

=> AD = AE (2 cạnh tương ứng)

=> Tam giác ADE

b.

Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:

 AB = AC (tam giác ABC cân tại A)

A1 = A2 (tam giác ADB = tam giác AEC)

=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)

=> BH = CK (2 cạnh tương ứng)

     AH = AK (2 cạnh tương ứng)

c.

Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:

BH = CK (theo câu b)

BD = CE (gt)

=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)

Ta có: 

DBH = IBC (2 góc đối đỉnh)

KCE = ICB (2 góc đối đỉnh)

mà DBH = KCE (tam giác HDB = tam giác KEC)

=> IBC = ICB 

=> Tam giác IBC cân tại I

a: Xét ΔABD và ΔACE có

AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cân tại A

mà AM vuông góc DE

nên AM là phân giác của góc DAE

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc BAH=góc CAK

=>ΔAHB=ΔAKC

=>BH=KC

d: Gọi giao của BH và CK là O

góc OBC=góc HBD

góc OCB=góc KCE
mà góc HBD=góc KCE

nên góc OBC=góc OCB

=>OB=OC

=>O nằm trên trung trực của BC

=>A,M,O thẳng hàng

 

23 tháng 1 2017

- Ai đó giúp tớ giải bài toán này với :v Tớ cảm ơn nhiều nhiều nhiều lắm luôn ý!

25 tháng 2 2018

A B C D E

Ta thấy AB = BD (GT) ; AC=CE (GT)

Mà AB = AC ( do tam  gaics ABC cân tại A)

Nên BD=CE

Ta thấy ^DBA = 180 dộ - ^ABC

           ^ECA = 180 độ - ^ACB

mà ^ABC = ^ ACB suy ra ^DBA = ^ ECA

Xét tam giác ABD và tam giác ACE có: 

              AB = AC

               ^BDA = ^ECA (cmt)

             BD = CE ( cmt )

suy ra tam giác ABD = tam giác ACE (c.g.c)

Suy ra ^D = ^ E ( 2 cạnh tương ứng)

Suy ra tam giac ADE cân tại A

+, ta thấy DE = BD + BC + CE

MÀ BD =AB ( GT ); CE= AC (GT)

Suy ra DE = AB+ BC+AC

b, Tam giác ABC có: ^BAC + ^ABC+^ACB = 180

                              32 + ^ABC + ^ ACB =180

                               ^ABC + ^ACB = 180-32=158

Suy ra ^ABC = ^ ACB = 158 :2 = 79

Mà ^ABC là góc ngoài của tam giac ABD cân tại b

Nên ^D=79:2=39,5

Suy ra D =^E= 39,5( tam giác ADE cân)

SUY ra DAC= 180-39,5-39,5=101

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

DO đó: ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

Ta có: DE=DB+BC+CE

nên DE=AB+BC+AC=CABC

bạn tham khảo bài này nhé : https://olm.vn/hoi-dap/detail/100443553347.html

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy của ΔBAC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE(gt)

\(\widehat{HDB}=\widehat{KEC}\)(ΔADB=ΔAEC)

Do đó: ΔHBD=ΔKCE(cạnh huyền-góc nhọn)

c) Ta có: ΔHBD=ΔKCE(cmt)

nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)

mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)

và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

20 tháng 2 2021

Chúc học tốt

25 tháng 1 2022

Bạn vẽ hình giúp mình nghen

a. Kẻ AI vuông góc với BC, ta có ABC là tam giác cân tại A nên: AI vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow BI=IC\)

Mà DI=DB+BI và EI=EC+CI và BD=EC \(\Rightarrow DI=EI\)

Suy ra AI cũng là đường cao cũng là đường trung tuyến của tam giác AED

\(\Rightarrow\)Tam giác ADE cân tại A

b. Xét \(\Delta ABD\) và \(\Delta ACE\) có: \(\left\{{}\begin{matrix}AB=AC\\DB=EC\\AD=AE\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta ABD\) = \(\Delta ACE\) (c-c-c)

\(\Rightarrow\widehat{DAB}=\widehat{EAC}\)

Xét \(\Delta AHB\) vuông tại H và \(\Delta AKC\) vuông tại K có: \(\left\{{}\begin{matrix}AB=AC\\\widehat{DAB}=\widehat{EAC}\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta AHB\)=\(\Delta AKC\) (dpcm)

\(\Rightarrow AH=AK\)

Xét \(\Delta AHO\) vuông tại H và \(\Delta AKO\) vuông tại K có: \(\left\{{}\begin{matrix}AH=AK\\AOchung\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta AHO\) = \(\Delta AKO\) (dpcm)

 

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
\(\widehat{BAH}=\widehat{CAK}\)

Do đó: ΔAHB=ΔAKC

Suy ra: \(\widehat{AHB}=\widehat{AKC}\)