K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2016

\(\Delta\) ABC cân tại A=> AB=AC

Xét \(\Delta\) ABE và \(\Delta\) ACD có:

AB=AC( cm trên)

Góc A chung

AD=AE ( gt)

=> \(\Delta\) ABE = \(\Delta\) ACE ( c.g.c)

=> BE=CD ( hai cạnh tương ứng)

Ta có: góc ADC + góc BDC =180o

góc AEB + góc CEB=180o

Mà góc ADC =góc AEB( Vì \(\Delta\) ABE=\(\Delta\) ACD)

=> góc BDC = góc CEB

Ta lại có: AD+DB=AB

AE+EC=AC

Mà AD=AE , AB=AC

=> DB=EC

Xét \(\Delta\) DMB và \(\Delta\) EMC :

góc BEC=góc BDC ( cm trên)

DB=EC( cm trên)

góc ABE=góc ACD( vì\(\Delta\) ABE=\(\Delta\) ACD)

=> \(\Delta\) BMD=\(\Delta\) CME(g.c.g)

=> BM=MC( 2 cạnh tương ứng)

Xét \(\Delta\) ABM và t\(\Delta\) ACM có:

Cạnh Am chung

AB=AC( cm trên)

BM=MC ( cm trên)

=> \(\Delta\) ABM=\(\Delta\)ACM(c.c.c)

=> góc BAM=góc CAM( 2 góc tương ứng)

Mà AM nằm giữa 2 tia AB và AC

=> AM là tia phân giác của góc BAC

28 tháng 12 2016

100% bạn viết đề sai chứ BE không bằng AD chỉ có BE=CD thôi

a.Xét tam giác DBC và tam giác ECB có:

DB=EC (AB=AC và AD=AE)

góc ABC = góc ACB (cân tại A)

BC là cạnh chung

Do đó tam giác DBC = tam giác ECB (c.g.c)

Suy ra BE= CD (ĐPCM)

16 tháng 2 2016

a. Ta có: AD + DB = AB; AE + EC = AC mà AD = AE; AB = AC

=> DB = EC

\(\Delta\)DCE và \(\Delta\)EBD có:

      DB = EC (cmt)

      B = C (gt)

      DC: cạnh chung

=> \(\Delta\)DCE = \(\Delta\)EBD (c.g.c)

=> BE = CD (hai cạnh tương ứng)

14 tháng 2 2016

a) Xét tam giác BDC và tam giác CEB ta có

  BC chung

  góc DBC=góc ECB( do tam giác ABC cân)

  BD=EC  ( AB=AC mà AD=AE)

Nên 2 tam giác bằng nhau

   Nên BE=CD

 

 

28 tháng 4 2016

Xét tam giác ABE và tam giác ACD có

AB=AC(gt)

AD=AE(gt)

góc A chung

\(\Rightarrow\)tam giác ABE= tam giác ACD(cgc)

\(\Rightarrow\)BE=CD(2 cạnh tương ứng)

22 tháng 3 2020

M A B C D E 1 2 1 1 2 2 1 1

a) Xét t/giác ABE và t/giác ACD

có: AB = AC (gt)

 góc A : chung

AD = AE  (gt)

=> t/giác ABE = t/giác ACD (c.g.c)

=> BE = CD (2 cạnh t/ứng)

b) Ta có: AB = AC (gt) ; AD = AE (gt) =>  BD = CE

 \(\widehat{D1}+\widehat{D2}=180^0\)(kề bù)

 \(\widehat{E1}+\widehat{E2}=180^0\)(kề bù)

mà \(\widehat{D2}=\widehat{E2}\) (do t/giác ABE = t/giác ACD)

=> \(\widehat{D1}=\widehat{E1}\)

 Xét t/giác BMD và t/giác CME

có : BD = CE (cmt)

 \(\widehat{D1}=\widehat{E2}\)(cmt)

 \(\widehat{B1}=\widehat{C1}\)(do t/giác ABE = t/giác ACD)

=> t/giác BMD = t/giác CME (g.c.g)

c)Xét t/giác ABM và t/giác ACM

có: AB = AC (gt)

 AM : chung

 BM = CM (do t/giác BMD = t/giác CME)

=> t/giác ABM = t/giác ACM (c.c.c)

=> \(\widehat{A1}=\widehat{A2}\) (2 góc t/ứng)

=> AM là tia p/giác của góc BAC

a) ko hỉu 

546576879780

18 tháng 5 2016

Sao không hỉu bạn

29 tháng 3 2018

                                               Bài giải

* Hình tự vẽ

a) Xét tam giác AEB và tam giác ADC có:

Góc A là góc chung

 AD = AE (gt)

AB = AC ( tam giác ABC cân tại A )

-> Tam giác AEB = tam giác ADC (c-g-c)

-> BE = CD (hai cạnh tương ứng)

29 tháng 3 2018

A B C M D E

a) Tam giác ABC cân tại A nên AB = AC .

Xét hai tam giác ABE và ACD có: AB = AC, góc A chung và AE = AD nên tam giác ABE = tam giác ACD.

=> BE = CD 

P/s: b) , c) bn tự lm nhé, xin lỗi!

22 tháng 3 2022

a/ Xét tam giác ABE và tam giác ADC có: 
Góc A chung 
AD=AE(gt) 
AB=AC(gt) 
=>Tam giác ABE=Tam giác ADC (c.g.c) 
->BE=CD( 2 cạnh tương ứng) 
b/Ta có:Tam giác ABC có AB=AC-> tam giác ABC cân tại A 
Tam giác ABE=tam giác ADC (cmt) 
-> Góc DBM= góc ECM (2 góc tương ứng) (1) 
mà góc B=góc C ( tam giác ABC cân tại A) 
-> Góc MBC=góc MCB 
-> Tam giác MBC cân tại M 
-> BM=CM(tính chất) (2) 
Lại có: AB=AC; AD=AE 
=> BD=EC (3) 
Từ (1); (2) và (3) suy ra: tam giác BMD=tam giác CME(c.g.c) 
c/Xét tam giác ABM và tam giác ACM có: 
AB=AC(gt) 
Góc ABM= góc ACM(CMt) 
BM=CM(cmt) 
=> Tam giác ABM=Tam giác ACK (c.g.c) 
-> góc BAM=góc CAM(2 góc tương ứng) 
hay AM là phân giác góc BAC

22 tháng 3 2022

a, Xét tam giác ABE và tam giác ACD có 

^A _ chung ; AB = AC ; AE = AD 

Vậy tam giác ABE = tam giác ACD (c.g.c) 

=> BD = CD ( 2 cạnh tương ứng ) 

b, Xét tam giác BMD và tam giác CME 

BD = CE ; ^BMD = ^CME ( đối đỉnh ) ; BD = CE 

do AB = AC và AD = AE 

Vậy tam giác BMD = tam giác CME (c.g.c)