Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
a) Gọi J là điểm thuộc AB sao cho BJ = AB/6
Ta có AM = AB/3 nên AM = 2BJ
Lại có BN = AB/2 mà AB = AC nên AC = 2BN
Vậy thì ta có ngay \(\Delta NBJ\sim\Delta CAM\left(c-g-c\right)\)
\(\Rightarrow\widehat{BNJ}=\widehat{ACM}\)
Lại có NB // AC nên NJ // EM
Xét tam giác ANJ có NJ // EM, áp dụng đinh lý Pitago ta có:
\(\frac{EA}{NE}=\frac{MA}{MJ}=\frac{2}{3}\)
Mà BN // FC (Cùng vuông góc AB) nên áp dụng định lý Ta let ta cũng có:
\(\frac{AF}{BN}=\frac{EA}{NE}=\frac{2}{3}\)
Mà \(\frac{AM}{BN}=\frac{2}{3}\Rightarrow AM=AF\)
b) Đặt BJ = a
Khi đó ta có \(AF=AM=2a;AC=6a;\)
\(NJ=\sqrt{9a^2+a^2}=a\sqrt{10}\Rightarrow EM=\frac{2a\sqrt{10}}{5}\)
\(BF=\sqrt{4a^2+36a^2}=2a\sqrt{10}\Rightarrow EF=\frac{4a\sqrt{10}}{3}\)
Ta thấy rằng \(EF^2+EC^2=64a^2=FC^2\) nên tam giác EFC vuông tại E.
Theo tính chất trung tuyến ứng với cạnh huyền trong tam giác vuông, ta có :
FH = EH = HC
Vậy nên EH = FH = FC/2 = 8a/2 = 4a = BM.