K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;

24 tháng 2 2018

Góc α: Góc giữa C, A, B Góc α: Góc giữa C, A, B Góc β: Góc giữa N, B, A Góc β: Góc giữa N, B, A Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng i: Đoạn thẳng [B, A] Đoạn thẳng l: Đoạn thẳng [B, N] Đoạn thẳng m: Đoạn thẳng [N, A] Đoạn thẳng r: Đoạn thẳng [B, F] Đoạn thẳng s: Đoạn thẳng [F, A] Đoạn thẳng t: Đoạn thẳng [E, C] Đoạn thẳng a: Đoạn thẳng [N, J] Đoạn thẳng b: Đoạn thẳng [E, H] A = (0.92, -1.12) A = (0.92, -1.12) A = (0.92, -1.12) A = (0.92, -1.12) A = (0.92, -1.12) A = (0.92, -1.12) A = (0.92, -1.12) C = (6.4, -1.14) C = (6.4, -1.14) C = (6.4, -1.14) C = (6.4, -1.14) C = (6.4, -1.14) C = (6.4, -1.14) C = (6.4, -1.14) Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm M: Giao điểm đường của d, i Điểm M: Giao điểm đường của d, i Điểm M: Giao điểm đường của d, i Điểm M: Giao điểm đường của d, i Điểm M: Giao điểm đường của d, i Điểm M: Giao điểm đường của d, i Điểm M: Giao điểm đường của d, i Điểm F_1: Trung điểm của B, M Điểm F_1: Trung điểm của B, M Điểm E_1: Trung điểm của B, A Điểm E_1: Trung điểm của B, A Điểm N: Giao điểm đường của e, k Điểm N: Giao điểm đường của e, k Điểm N: Giao điểm đường của e, k Điểm N: Giao điểm đường của e, k Điểm N: Giao điểm đường của e, k Điểm N: Giao điểm đường của e, k Điểm N: Giao điểm đường của e, k Điểm E: Giao điểm đường của n, m Điểm E: Giao điểm đường của n, m Điểm E: Giao điểm đường của n, m Điểm E: Giao điểm đường của n, m Điểm E: Giao điểm đường của n, m Điểm E: Giao điểm đường của n, m Điểm E: Giao điểm đường của n, m Điểm F: Giao điểm đường của p, q Điểm F: Giao điểm đường của p, q Điểm F: Giao điểm đường của p, q Điểm F: Giao điểm đường của p, q Điểm F: Giao điểm đường của p, q Điểm F: Giao điểm đường của p, q Điểm F: Giao điểm đường của p, q Điểm J: Trung điểm của B, F_1 Điểm J: Trung điểm của B, F_1 Điểm J: Trung điểm của B, F_1 Điểm J: Trung điểm của B, F_1 Điểm J: Trung điểm của B, F_1 Điểm J: Trung điểm của B, F_1 Điểm J: Trung điểm của B, F_1 Điểm H: Trung điểm của F, C Điểm H: Trung điểm của F, C Điểm H: Trung điểm của F, C Điểm H: Trung điểm của F, C Điểm H: Trung điểm của F, C Điểm H: Trung điểm của F, C Điểm H: Trung điểm của F, C

a) Gọi J là điểm thuộc AB sao cho BJ = AB/6

Ta có AM = AB/3 nên AM = 2BJ

Lại có BN = AB/2 mà AB = AC nên AC = 2BN

Vậy thì ta có ngay \(\Delta NBJ\sim\Delta CAM\left(c-g-c\right)\)

\(\Rightarrow\widehat{BNJ}=\widehat{ACM}\)

Lại có NB // AC nên NJ // EM

Xét tam giác ANJ có NJ // EM, áp dụng đinh lý Pitago ta có:

\(\frac{EA}{NE}=\frac{MA}{MJ}=\frac{2}{3}\)

Mà BN // FC (Cùng vuông góc AB) nên áp dụng định lý Ta let ta cũng có:

\(\frac{AF}{BN}=\frac{EA}{NE}=\frac{2}{3}\)

Mà \(\frac{AM}{BN}=\frac{2}{3}\Rightarrow AM=AF\)

b) Đặt BJ = a

Khi đó ta có \(AF=AM=2a;AC=6a;\)

\(NJ=\sqrt{9a^2+a^2}=a\sqrt{10}\Rightarrow EM=\frac{2a\sqrt{10}}{5}\)

\(BF=\sqrt{4a^2+36a^2}=2a\sqrt{10}\Rightarrow EF=\frac{4a\sqrt{10}}{3}\)

Ta thấy rằng \(EF^2+EC^2=64a^2=FC^2\) nên tam giác EFC vuông tại E.

Theo tính chất trung tuyến ứng với cạnh huyền trong tam giác vuông, ta có :

FH = EH = HC

Vậy nên EH = FH = FC/2 = 8a/2 = 4a = BM.

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
23 tháng 4 2021

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)