Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADME có
AD//ME
DM//AE
Do đó: ADME là hình bình hành
b) Xét ΔEMC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)
nên ΔEMC cân tại E
Suy ra: EM=EC
Ta có: AE+EC=AC(E nằm giữa A và C)
mà AE=DM(AEMD là hình bình hành
mà EM=EC(cmt)
nên AC=MD+ME
cho mình hỏi ngu tí là ở câu b đó ạ,từ đâu mà suy ra được góc EMC = C(=B) ạ :((
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
a: Xét tứ giác BMEC có ME//BC
nên BMEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMEC là hình thang cân
b: Xét ΔABC có
M là trung điểm của AB
ME//BC
Do đó: E là trung điểm của AC
Xét ΔABC có
M là trung điểm của AB
MF//AC
Do đó: F là trung điểm của BC
Xét ΔABC có
M là trung điểm của AB
F là trung điểm của BC
Do đó: MF là đường trung bình của ΔBAC
Suy ra: \(MF=\dfrac{AC}{2}\)
mà \(EC=\dfrac{AC}{2}\)
nên MF=EC
Xét tứ giác MECF có
MF//EC
MF=EC
Do đó: MECF là hình bình hành
c: Xét ΔABC có
M là trung điểm của AB
E là trung điểm của AC
Do đó: ME là đường trung bình của ΔABC
Suy ra: ME//BC và \(ME=\dfrac{BC}{2}\)
mà \(BF=\dfrac{BC}{2}\)
nên ME//BF và ME=BF
Xét tứ giác MEFB có
ME//BF
ME=BF
Do đó: MEFB là hình bình hành
Suy ra: Hai đường chéo MF và BE cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của MF
nên I là trung điểm của BE
hay B,I,E thẳng hàng
a: Xét tứ giác ADME có
AD//ME
AE//MD
Do đo: ADME là hình bình hành
b: Xét ΔEMC có góc EMC=góc ECM(=góc B)
nên ΔEMC cân tại E
=>EM=EC
d: Để ADME là hìh thoi thì AM là phân giác của góc BAC
=>M là chân đừog phân giác kẻ từ A xuống BC