K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

bạn tự vẽ hình nhé

a) Vì M là trung điểm BC nên AM là đường trung tuyến của tam giác ABC

Mà tam giác ABC cân nên AM là trung tuyến đồng thời đường cao => AM vuông góc BC

b) Tam giác ABC cân nên góc B = góc C

Xét tam giác BHM và tam giác CKM có:

góc BHM= góc CKM= 90 độ

 góc B= góc C

BM=CM ( do M là trđiểm BC)

=> tam giác BHM = tam giác CKM (Cạnh huyền - góc nhọn)

=> BH=CK

c) tam giác BHM = tam giác CKM (cmt)=> góc BMH=góc CMK( hai góc tương ứng)

mà BP // MK( do cùng vuông góc với AC)=> góc IBM= góc KMC ( hai góc đồng vị) 

=> góc IBM =góc IMB => tam giác IBM cân

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

a) Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{KAC}\) chung

Do đó: ΔAHB=ΔAKC(cạnh huyền-góc nhọn)

⇒AH=AK(hai cạnh tương ứng)

b) Xét ΔAHK có AH=AK(cmt)

nên ΔAHK cân tại A(Định nghĩa tam giác cân)

\(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAHK cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)

mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên HK//BC(dấu hiệu nhận biết hai đường thẳng song song)

5 tháng 3 2021

undefined

undefined

chữ đẹp quá trời lun

6 tháng 9 2020

câu a: xét 2 tam giác MAB vs MCD :

ta có : AM = DM (gt)

góc BMA = góc DMC ( đối đỉnh)

MB = MC (gt)

=> tam giác MAB = tam giác MDC (c.g.c)

câu b: ta có : AC > AB

AB = CD ( 2 cạnh tương ứng)

=> AC > CD ( tính chất bắt cầu )

câu c: xét 2 tam giác ABK va ADK

ta có : AB = DC ( như câu a)

KA = KC ( gt )

=> tam giác ABK = tam giác CDK ( 2 cạnh góc vuông )

câu d : xét 2 tam giác NAK và ICK

ta có : AK = KC ( gt )

góc NAK = góc ICK (Vì :

*1: có góc A = góc C ( vuông )

*2:góc BAN = DCI ( như câu a)

từ *1 và *2 => góc A - góc BAN = góc NAK và góc C - góc DCI = góc ICK

=> góc NAK = góc ICK )

góc DKC = góc BKA ( như câu c )

=> tam giác NAK = tam giác ICK ( g.c.g )

=> NK = NI ( 2 cạnh tương ứng )

=> tam giác NKI cân tại K ( vì có NK = IK) .

Hy vọng nó đúng vì tui ko chắc ăn tam giác ACD có vuông hay ko . chúc bạn hc giỏi

6 tháng 9 2020

d,CM AM<1/2(AB+AC).Điều này không đúng nếu tam giác ABC không là tam giác vuông.

11 tháng 12 2020

Bạn kiểm tra lại đề câu cuối!

Bài 6 (các câu khác nhau thì không liên quan đến nhau)a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.Chứng minh tam giác ABC cân.Tết đến tưng bừng, vui mừng làm ToánGiáo viên: Nguyễn Cao Uyển Mib) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =BN. Chứng tỏ tam giác ABC cân.c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB...
Đọc tiếp

Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB 
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.

Giúp mình với ạ, mik đang cần gấp

1
6 tháng 2 2022

Ai giúp mik với mik đang cần gấp ạ

a) Xét ∆ ABK và ∆IBK có:

+\(\widehat{ABK}=\widehat{KBI}\)(gt)

+BK chung

+\(\widehat{BAK}=\widehat{BIK}\left(=90^o\right)\)

\(\Rightarrow\)∆ABK=∆IBK(ch-gnhon)

b) Ta có: \(\left\{{}\begin{matrix}KI\perp BC\left(gt\right)\\AD\perp BC\left(gt\right)\end{matrix}\right.\)

Do đó: KI//AD

\(\Rightarrow\widehat{DAI}=\widehat{AIK}\)(2 góc SLT) (1)

Ta có ∆ABK=∆IBK(cmt)

nên KA=KI (2 cạnh tương ứng)

Xét ∆KAI cân tại K

\(\Rightarrow\widehat{KAI}=\widehat{KIA}\)(2 góc đáy) (2)

Từ (1) và (2)\(\Rightarrow\widehat{DAI}=\widehat{KAI}\Leftrightarrow\widehat{DAI}=\widehat{IAC}\)

=> AI là tia pgiac(đpcm)