K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

Chọn đáp án D

Phương pháp

Sử dụng công thức tính thể tích khối nón có chiều cao h và bán kính đáy r là

Cách giải

Áp dụng định lí cosin trong tam giác ABC ta có:

+) Gọi H là trung điểm của BC.

Khi quay tam giác ABC quanh cạnh BC ta được 2 hình nón có chung bán kính đáy AH, đường cao lần lượt là BH và CH với

+) Khi quay tam giác ABC quanh AB ta được khối tròn xoay như sau:

Gọi D là điểm đối xứng C qua AB, H là trung điểm của CD

+) Do điểm B và C có vai trò như nhau nên khi quay tam giác ABC quanh AC ta cũng nhận được khối tròn xoay có thể tích bằng 16.

Vậy thể tích lớn nhất có thể được khi quay tam giác ABC quanh một đường thẳng chứa cạnh của tam giác ABC là 16π

6 tháng 12 2017

 

Chọn C.

Phương pháp:

Dựng hình, xác định các hình tròn xoay tạo thành khi quay và tính tỉ số thể tích.

Cách giải:

 

1 tháng 5 2017

Đáp án B

Gọi H là hình chiếu của C trên AB. Khi quay quanh AB ta sẽ thu được một hình nón bị thiếu đáy và thể tích phần đáy bị thiếu lại chính bằng thể tích của khối nón nhỏ khi quay ∆ A B C  quanh AH. Vậy thể tích cần tính là 

3 tháng 12 2018

Đáp án A

Vì hai mặt phẳng (ABC), (ABD) vuông góc với nhau nên bài toán trở thành “Tính thể tích khối tròn xoay khi quay tam giác HAB quanh AB với ABCD là hình thang vuông tại A,B” như hình bên. Hai tam giác BHC và DHA đồng dạng ⇒ B H D H = H C H A = B C A D = 1 3 .

Mà B D = A D 2 + A B 2 = 2 a 3 ; A C = A B 2 + C B 2 = 2 a

Suy ra A H = 3 4 A C = 3 4 .2 a = 3 a 2 và B H = 1 4 B D = 1 4 .2 a 3 = a 3 2 .

Diện tích tam giác ABH là:

S Δ A B H = 1 2 . A H . B H = 1 2 . 3 a 2 . a 3 2 = 3 a 2 3 8 = 1 2 . d H ; B C . B C ⇒ d H ; B C = 2. 3 a 2 3 8 . a 3 = 3 a 4 .

Vậy thể tích khối tròn xoay cần tính là:

V = 1 3 π 3 a 4 2 . a 3 = 3 3 π a 2 16 .

3 tháng 4 2019

Đáp án B

Ta có V = 1 3 π . OC 2 . BO - 1 3 πOC 2 . AO = 1 3 π . OC 2 . AB .  

Lại có  sin 60 ° = O C A C ⇒ O C = a 3 2 ⇒ V = πa 3 4 .

11 tháng 12 2017

Đáp án B

Khi quay miền trong tam giác ABC quanh cạnh BC ta được hai hình nón, hình nón đỉnh B bán kính đáy OA, hình nón đỉnh C bán kính đáy OA.

5 tháng 4 2017

21 tháng 5 2018

Chọn đáp án D

Phương pháp

Sử dụng công thức tính thể tích khối nón có bán kính đáy r và đương cao h là

Cách giải

Quay tam giác ABC quanh đường thẳng AB ta được khối nón có bán kính đáy r=AC=b và đường cao h=AB=c. Khi đó thể tích của khối nón bằng

26 tháng 5 2019

Đáp án B

24 tháng 4 2018

Đáp án B

Hình nón có chiều cao AB và bán kính BC. Diện tích xung quanh của hình nón là S = π a .2 a = 2 π a 2