K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2015

BD và CE là đường cao cắt nhau tại H => H là trực tâm Tam giác ABC . 
Vậy AI cùng là đường cao thứ 3. 
Mà Tam giác ABC cân tại A (gt) 
=> AI vừa là đường cao vừa là trung tuyến của Tam giác ABC . 
=> IB = IC.
Xét tam giác HIB và tam giác HCI có: 
IH : Cạnh chung 
Góc HIC = góc HIB (=90 độ)
IB = IC (AI trung tuyến)
=> Tam giác HIB = Tam giác HCI (c.g.c)
=> HB = HC (2 cạnh tương ứng).
Vậy Tam giác HBC cân tại H .(1) 
Mặt khác : BD vuông góc AC; đường thẳng d vuông góc AC.
=> BD // CF (Từ vuông góc đến song song)
=> Góc HBC = Góc ICF (So le) 
Lại có góc HBC = góc HCI ( Theo (1) ) 
=> Góc HCB = góc FCB. (Cùng bằng góc HBC).

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc BAD chung

=>ΔADB=ΔAEC

=>BD=CE

b: góc ABD=góc ACE

=>góc HBC=góc HCB

=>ΔHBC cân tại H

c: AB=AC

HB=HC

=>AH là trung trực của BC

7 tháng 5 2017

Bạn tự vẽ hình ik nha

a. Xét tam giác ABD và tam giác ACE có:

góc D = góc E = 90* (gt)

AB = AC (gt)

góc A chung

=> tg ABD = tg ACE (c. huyền-g. nhọn)

b. Vì H là giao điểm của 2 dường cao BD và CE 

Nên AH cũng là đường cao cùa tg ABC hay AH vuông góc BC

Do tg ABC là tam giác cân => AI là đường cao đồng thời cũng là dường trung tuyến => BI = CI => I là trung điểm của BC

c.Ta có: góc ACE = góc ABD (doc tg ABD = tg ACE)

 và góc ABC = góc ACB

=> góc DBC = góc ECB

 Ta có: BD vuông góc AC (gt)

              CF vuông góc AC (gt)

=>          CF song song BD (2 dường thẳng cùng vuông góc với 1 dường thẳng)

=>      góc DBC = góc BCF ( so le trong)

Mà góc DBC = góc ECB

=> góc ECB = góc BCF

=> BC lá tia phân giác của góc ECF

9 tháng 5 2018

ABCHIEDNM
 

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có

AB=AC(tam giác ABC cân tại A)

Góc A chung 

=> Tam giác ABD=tam giác ACE(ch-gn)

b) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
                 Và \(\widehat{ABD}=\widehat{ACE}\) ( tam giác ABD=ACE)

\(\Leftrightarrow\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\\ \Leftrightarrow\widehat{DBC}=\widehat{ECB}\)

Do đó tam giác BHC cân tại H

Bài 6 (các câu khác nhau thì không liên quan đến nhau)a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.Chứng minh tam giác ABC cân.Tết đến tưng bừng, vui mừng làm ToánGiáo viên: Nguyễn Cao Uyển Mib) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =BN. Chứng tỏ tam giác ABC cân.c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB...
Đọc tiếp

Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB 
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.

Giúp mình với ạ, mik đang cần gấp

1
6 tháng 2 2022

Ai giúp mik với mik đang cần gấp ạ