K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

A B C D E F

a) Ta có :

AD = AC => Tam giác ACD cân tại A

=> \(\widehat{ACD}=\widehat{ADC}\)

+ \(\widehat{2ACD}+\widehat{DAC}=180^0\) (1)

Tam giác ABC cân tại A

=> \(\widehat{ABC}=\widehat{ACB}hay2\widehat{ACB}\)

Ta có : \(\widehat{CAD}=\widehat{ABC}+\widehat{ACB}=2\widehat{ACB}\left(2\right)\)

Thay (2) vào (1) ,có :

\(2\widehat{ACD}+2\widehat{ACB}=180^0\)

\(2\left(\widehat{ACD}+\widehat{ACB}\right)=180^0\)

=> \(\widehat{BCD}=90^0\)

b) Bạn suy nghĩ c/m tương tự phần a nha

a: Ta có ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC

b: Xét ΔDAC có DA=DC

nên ΔDAC cân tại D

=>\(\widehat{DAC}=\widehat{C}=\widehat{ABC}\)

18 tháng 5 2022

ý c) DE đi qua j ạ

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực

b: Xét ΔDAC có 

D nằm trên đường trung trực của AC

Do đó: ΔDAC cân tại D

=>\(\widehat{DAC}=\widehat{ACB}=\widehat{ABC}\)

11 tháng 1 2020

Xét tam giác ABC ,có:

AB=AC

=> tam giác ABC cân tại A

=> góc ABC = góc ACB

vì A là trung điểm của BD (gt)

=> AB = AD 

Mà AB = AC ( gt)
=> AD = AC

=> tam giác ACD là tam giác cân tại A 

=> góc ACD = góc ADC

có góc BCD = góc ACB + góc ACD ( hệ thức cộng góc )

mà góc ABC = góc ACB(cmt) ; góc ADC = góc ACD (cmt)

=> góc BCD = góc ABC + góc ADC 

=> đpcm

còn câu b mk chx nghĩ ra =.=///

hok tốt

11 tháng 1 2020

Nguyễn Ngọc Linh làm câu a rùi nha. mk làm câu b cho

Ta có A là trung điểm của BD

=> AB=1/2.BD

Mà theo bài ra AB=AC 

=>AC=1/2.BD

Xét tam giác BCD có : AC là đường trung tuyến bằng 1/2 cạnh đối diện 

=> tam giác BCD vuông tại C

=>  góc BCD= 90 độ

8 tháng 3 2020

a/ Xét ΔABM;ΔACMΔABM;ΔACM có :

⎧⎩⎨⎪⎪AB=ACBˆ=CˆMB=MC{AB=ACB^=C^MB=MC

⇔ΔAMB=ΔAMC(c−g−c)⇔ΔAMB=ΔAMC(c−g−c)

b/ Xét ΔBHM;ΔCKMΔBHM;ΔCKM có :

⎧⎩⎨⎪⎪⎪⎪BHMˆ=CKMˆ=900Bˆ=CˆMB=MC{BHM^=CKM^=900B^=C^MB=MC

⇔ΔBHM=ΔCKM(ch−gn)⇔ΔBHM=ΔCKM(ch−gn)

⇔BH=CK

8 tháng 3 2020

BCE=ADC nhes cacs banj

19 tháng 7 2020

A B C D E M

a, Xét \(\Delta\)ABD và \(\Delta\)ACE ta có : 

AB = AC (do tam giác ABD cân đỉnh A)

BD = CE (GT)

\(\widehat{ABD}=\widehat{ACE}\left(GT\right)\)

=> \(\Delta\)ABD = \(\Delta\)ACE (c-g-c)

=> AD = AE (2 cạnh tương ứng)

=> \(\Delta\)ADE cân đỉnh A

b, Ta có : BD + BM = CE + CM <=> DM = EM 

Xét \(\Delta\)AMD và \(\Delta\)AME ta có 

AD = AE (cma)

AM chung 

DM = EM (cmt)

=> \(\Delta\)AMD = \(\Delta\)AME (c-c-c)

=> \(\widehat{MAD}=\widehat{MAE}\)( 2 góc tương ứng )

=> AM là p/g \(\widehat{DAE}\)

Ta có : \(\Delta AMD=\Delta AME\)

=> \(\widehat{AMD}=\widehat{AME}\)Mà \(\widehat{AMD}+\widehat{AME}=180^0\)

Vì \(\widehat{AMD}=\widehat{AME}\)Suy ra : \(\widehat{AMD}=\widehat{AME}=\frac{180^0}{2}=90^0\)

Vậy ta có đpcm 

19 tháng 7 2020

A B C D E M

a, Ta có:

     góc B + góc ABD = 180độ    ( vì ABD là góc ngoài của tam giác ABC tại B )

   góc C + góc ACE = 180độ     ( vì ACE là góc ngoài của tam giác ABC tại C )     

mà góc B = góc C   ( vì tam giác ABC cân tại A )

\(\Rightarrow\)         góc ABD = góc ACE

Xét tam giác ABD và tam giác ACE có

         AB = AC   

        góc ABD = góc ACE ( theo chứng minh trên )

        BD = CE   ( gt )

Do đó : tam giác ABD = tam giác ACE  (c.g.c)

\(\Rightarrow\)AD = AE  và góc D = góc E 

Vậy tam giác ADE là tam giác cân tại A

b,Vì M là trung điểm của BC nên 

 BM = CM

và BD = CE 

\(\Rightarrow\)BM + BD = CM + CE

\(\Rightarrow\)MD = ME

Xét tam giác AMD và tam giác AME có

        cạnh AM chung

        AD = AE ( theo câu a )

       MD = ME ( theo chứng minh trên )

Do đó : tam giác AMD = tam giác AME ( c.c.c )

\(\Rightarrow\)góc MAD = góc MAE 

Vậy AM là tia phân giác góc DAE

Học tốt !

###CÁC BẠN CÓ THỂ GIẢI GIÚP MÌNH 1 TRONG 5 BÀI TOÁN NÀY, NẾU BẠN NÀO BIẾT LÀM BÀI NÀO GIẢI GIÚP MÌNH NHANH NHÉ, KHÔNG CẦN VẼ HÌNH, CHỈ CẦN LÀM BƯỚC CHỨNG MINH LÀ ĐƯỢC, THANK YOU!!!!!!!!!!!!!!!!1) Cho góc xOy. Trên tia Ox lấy điểm A và trên tia đối của tia Oy lấy điểm B sao cho OA = OB. Chứng minh rằng AB song song với tia phân giác của góc xOy2) Cho tam giác ABC cân tại A. Trên cạnh BA lấy điểm D, sao cho...
Đọc tiếp

###CÁC BẠN CÓ THỂ GIẢI GIÚP MÌNH 1 TRONG 5 BÀI TOÁN NÀY, NẾU BẠN NÀO BIẾT LÀM BÀI NÀO GIẢI GIÚP MÌNH NHANH NHÉ, KHÔNG CẦN VẼ HÌNH, CHỈ CẦN LÀM BƯỚC CHỨNG MINH LÀ ĐƯỢC, THANK YOU!!!!!!!!!!!!!!!!

1) Cho góc xOy. Trên tia Ox lấy điểm A và trên tia đối của tia Oy lấy điểm B sao cho OA = OB. Chứng minh rằng AB song song với tia phân giác của góc xOy

2) Cho tam giác ABC cân tại A. Trên cạnh BA lấy điểm D, sao cho A là trung điểm của BD. Chứng minh rằng:

      - Góc BCD = góc ABC + góc ADC

      - Góc BCD = 90 độ

3) Cho tam giác ABC. Vẽ các tam giác đều ABD và ACE ra phía ngoài tam giác ABC. Nối BE và CD. Gọi M và N là trung điểm của BE và CD. Chứng minh tam giác AMN đều

4) Cho tam giác ABC cân, AB là cạnh đấy, góc C = 100 độ. Trên nửa mặt phẳng chứa điểm C, bờ là đường thẳng AB, dựng tia Ax tạo với AB một góc 30 độ và tia By tạo với BA một góc 20 độ. Hai tia Ax và By cắt nhau tại D. Tính góc ACD

5) Cho tam giác ABC cân tại A có góc A < 90 độ, kẻ BD vuông góc với AC. Trên cạnh AB lấy điểm E sao cho AE = AD. Chứng minh rằng:

      - DE song song với BD

      - CE vuông góc với AB

0

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cântại A

mà AM vuông góc

nen AM là phân giác của góc DAE

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

=>ΔABH=ΔACK

=>BH=CK

d: Gọi O là giao của BH và CK

góc OBC=góc HBD

góc OCB=góc KCE
mà góc HBD=góc KCE

nên góc OBC=góc OCB

=>OB=OC

=>O nằm trên trung trực của BC

=>A,M,O thẳng hàng