K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{B}=\widehat{C}=\dfrac{180^0-70^0}{2}=55^0\)

b: Ta có: ΔABC cân tại A

mà AD là đường phân giác

nên AD là đường cao

c: Xét ΔAMN có 

AB/BM=AC/CN

nên MN//BC

d: Ta có: ΔAMN cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

=>AI⊥MN

mà MN//BC

nên AI⊥BC

mà AD⊥BC

và AD,AI có điểm chung là A

nên D,A,I thẳng hàng

e: Xét ΔBEC có 

D là trung điểm của BC

DA//BE

Do đó: A là trung điểm của EC

10 tháng 8 2019

Cách 3: (Lớp 8) Trên nửa mặt phẳng bờ AC không chứa B, dựng tam giác đều ACG.

A C B D G

Có ngay AB = AC = AG và ^BAG = ^BAC + ^CAG = 900 => \(\Delta\)BAG vuông cân tại A

Suy ra ^CBG = ^ABC - ^ABG = 300 = ^DAB      (1)

Cũng dễ thấy ^ADB = 1350; ^BCG = ^ACB + ^ACG = 1350 => ^BCG = ^ADB (2)

Từ (1) và (2) suy ra \(\Delta\)CGB ~ \(\Delta\)DBA (g.g). Từ đây \(\frac{AD}{BC}=\frac{AB}{BG}=\frac{1}{\sqrt{2}}\)

Vậy \(AD=\frac{BC}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)(cm).

9 tháng 8 2019

B A C D E

Trên nửa mặt phẳng bờ BC chứa A dựng \(\Delta\)BCE vuông cân tại E

Khi đó ^EBA = ^ABC - ^EBC = 300 = ^DAB

\(\Delta\)AEC = \(\Delta\)AEB (c.c.c) => ^EAB = ^BAC/2 = 150 = ^DBA

Xét \(\Delta\)BEA và \(\Delta\)ADB có: AB chung, ^EAB = ^DBA, ^EBA = ^DAB

=> \(\Delta\)BEA = \(\Delta\)ADB (g.c.g) => AD = BE = \(\frac{BC}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)(cm).

7 tháng 2 2020

Câu hỏi của nguyen anh ngoc ly - Toán lớp 7 - Học toán với OnlineMath

16 tháng 1 2019

xét tam giác ABM và tam giác ACN có: AB=AC(gt); BM=CN(gt); góc ABM= góc ACN(cùng kề bù vs góc ABC)

suy ra tam giác ABM=tam giác ACN(c.g.c)

suy ra AM=AN

suy ra tam giác AMN cân tại A

16 tháng 1 2019

b, xét tam giác ABH và tam giác ACK có: góc AHB= goác AKC =90 độ; AB=AC(gt); góc HAB= góc KAC ( do tam giác AMB= tam giác ANC)

suy ra tam giác AHB= tam giác AKC(ch-gn)

suy ra BH=CK

4 tháng 2 2018

a)   \(\Delta ABC\)cân tại   \(A\)

\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}\)   ;     \(AB=AC\)

mà    \(\widehat{ABC}+\widehat{ABM}=\widehat{ACB}+\widehat{ACN}=180^0\)  (kề bù)

\(\Rightarrow\)\(\widehat{ABM}=\widehat{ACN}\)

Xét:   \(\Delta ABM\)và     \(\Delta ACN\)có:

      \(AB=AC\)(cmt)

     \(\widehat{ABM}=\widehat{ACN}\)(cmt)

     \(BM=CN\)(gt)

suy ra:    \(\Delta ABM=\Delta ACN\)(c.g.c)

\(\Rightarrow\)\(AM=AN\)(cạnh tương ứng)

\(\Rightarrow\)\(\Delta AMN\)cân tại   \(A\)