K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều 
=> BM=CM => M thuộc trung trực cua BC 
Lại có : AB=AC(ABC can tai A) 
=> A thuộc trung trực cua BC 
Do đó : AM là trung trực của BC 
=> AM là phân giác góc BAC 
=> góc MAB = góc MAC = góc BAC /2 = 20 độ/2=10 độ 
tam giac ABC can tai A 
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ 
lai co : goc MCA = goc ACB - goc MCB 
goc MCB = 60 độ (Tg BCM đều) 
Suy ra : goc MCA = 20 độ 
Xet tg CMA va tg ADC co: 
AC chung 
CM=DA (cung bang BC) 
goc MCA = goc DAC (= 20 độ) 
=> tg CMA = tg ADC ( c.g.c) 
=> goc CDA = goc CMA = 150 độ 
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu) 
suy ra : goc BDC = 30 độ 

Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều 
=> BM=CM => M thuộc trung trực cua BC 
Lại có : AB=AC(ABC can tai A) 
=> A thuộc trung trực cua BC 
Do đó : AM là trung trực của BC 
=> AM là phân giác góc BAC 
=> góc MAB = góc MAC = góc BAC /2 = 20 độ/2=10 độ 
tam giac ABC can tai A 
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ 
lai co : goc MCA = goc ACB - goc MCB 
goc MCB = 60 độ (Tg BCM đều) 
Suy ra : goc MCA = 20 độ 
Xet tg CMA va tg ADC co: 
AC chung 
CM=DA (cung bang BC) 
goc MCA = goc DAC (= 20 độ) 
=> tg CMA = tg ADC ( c.g.c) 
=> goc CDA = goc CMA = 150 độ 
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu) 
suy ra : goc BDC = 30 độ 

28 tháng 2 2018

11 tháng 11 2021

a, Xét ΔDHB và ΔDAB ta có:
HB = AB

DB chung

=> ΔDHB = ΔDAB ( cạnh huyền - cạnh góc vuông)

=> DBH^ = DBA^ 

=> BD là tia phân giác ABC^

b, BD là tia phân giác ABC^ 

=> DBA^  = 30

ΔABC vuông tại A có ABC^  = 60

=> ACB^  = 30

Xét ΔDCH và ΔDBA ta có:

DBA^  = ACB^ ( =30)

DH = DA ( do ΔDHA = ΔDAB chứng minh câu a)

=> ΔDCH = ΔDBA ( cạnh huyền - góc nhọn)

=> DC = DB

=> ΔBDC cân tại D

11 tháng 11 2021

a/ Xét tg vuông ABD và tg vuông HBD có

BD chung; HB=AB (gt) => tg ABD = tg HBD (2 tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)

\(\Rightarrow\widehat{ABD}=\widehat{HBD}\) => BD là phân giác \(\widehat{ABC}\)

b/

Xét tg vuông ABC có

\(\Rightarrow\widehat{ACB}=90^o-\widehat{ABC}=90^o-60^o=30^o\)

\(\Rightarrow AB=\frac{BC}{2}\) (trong tg vuông cạnh đối diện với góc 30 độ bằng nửa cạnh huyền) (1)

Ta có HB=AB (gt) (2)

Từ (1) và (2) \(\Rightarrow HB=\frac{BC}{2}\) => H là trung điểm của BC => DH là trung tuyến thuộc BC

Mà \(DH\perp BC\) => DH là đường cao của tg BDC

=> tg BDC cân tại D (Trong tg nếu đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)

28 tháng 8 2018

Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều 
=> BM=CM => M thuộc trung trực cua BC 
Lại có : AB=AC(ABC can tai A) 
=> A thuộc trung trực cua BC 
Do đó : AM là trung trực của BC 
=> AM là phân giác góc BAC 
=> góc MAB = góc MAC = góc BAC /2 = 20 độ/2=10 độ 
tam giac ABC can tai A 
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ 
lai co : goc MCA = goc ACB - goc MCB 
goc MCB = 60 độ (Tg BCM đều) 
Suy ra : goc MCA = 20 độ 
Xet tg CMA va tg ADC co: 
AC chung 
CM=DA (cung bang BC) 
goc MCA = goc DAC (= 20 độ) 
=> tg CMA = tg ADC ( c.g.c) 
=> goc CDA = goc CMA = 150 độ 
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu) 
Suy ra : goc BDC = 30 độ 

28 tháng 8 2018

Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều.

=> BM = CM => M thuộc trung trực của BC 

Lại có: AB = AC (ABC cân tại A) 

=> A thuộc trung trực của BC 

Do đó: AM là trung trực của BC 

=> AM là phân giác góc BAC 

=> Góc MAB = góc MAC = góc BAC /2 = 20 độ/2 = 10 độ 

Tam giác ABC cân tại A 

=> Góc CBA = góc BCA = (180 - góc BAC)/2 = (180 - 20)/2 = 80 độ 

Lại có: Góc MCA = góc ACB - góc MCB 

Góc MCB = 60 độ (Tg BCM đều) 

Suy ra: góc MCA = 20 độ 

Xét tg CMA và tg ADC có: 

AC chung 

CM = DA (cũng bằng BC) 

Góc MCA = góc DAC (= 20 độ) 

=> tg CMA = tg ADC ( c.g.c) 

=> Góc CDA = góc CMA = 150 độ 

Mặt khác: Góc CDA + góc BDC = 180 độ (2 góc kê bù) 

Suy ra: góc BDC = 30 độ