Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thấy 52=32+42 hay BC2=AB2+AC2
\(\Rightarrow\Delta ABC\) vuông tại A
b)Hình thì chắc bạn tự vẽ được nha
Xét 2\(\Delta ABH\) và\(\Delta DBH\) có:
AB=DB
\(\widehat{BAH}=\widehat{BDH}\)
BH chung
\(\Rightarrow\Delta ABH=\Delta DBH\left(ch-cgv\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)
\(\Rightarrow\)BH là tia phân giác \(\widehat{ABC}\)
c)tam giác ABC đã có các cạnh có độ dài khác nhau nên tam giác ABC ko cân được đâu chị
a) Ta có :
-BC2=52=25(1)
-AB2+AC2=32+42=25(2)
-Từ (1)và(2)suy ra BC2=AB2+AC2
-do đó tam giác ABC vuông tại A(áp dụng định lý Py-ta-go đảo)
-vậy tam giác ABC là tam giác vuông .
b)Xét \(\Delta\) ABH(vuông tại A) và \(\Delta\) DBH(vuông tại D) có
-BH là cạnh huyền chung
-AB=BD(gt)
-Do đó:\(\Delta\) ABH=\(\Delta\) DBH(cạnh huyền-cạnh góc vuông)
\(\Rightarrow\)Góc ABH =Góc DBH(hai góc tương ứng)
Vậy BH là tia phân giác của góc ABC
a: Xét ΔADE có
AB/BD=AC/CE
nên DE//BC
b: Xét ΔDBM vuông tại M và ΔECN vuông tại N có
DB=EC
\(\widehat{DBM}=\widehat{ECN}\)
Do đó: ΔDBM=ΔECN
Suy ra: BM=CN
c: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
DO đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
a
gốc BAD=30*; góc ACB=30*
b
chứng minh ▲KCB=▲ABC
=>> AB=CK
c
chứng minh tương tự như câu b
d
xét ▲ABC vuông tạ A => cos60*=AB/BC
=>> BC=2AB
C/m 3 điểm thẳng hàng là tìm trọng tâm của tam giác đóa pạn, có trọng tâm ròi =>D,M.F thẳng hàng
a/Áp dụng định lí Pytago và tam giác ABC vuông tại A:
BC2=AB2+AC2
=>AC2=BC2-AB2=102-62=100-36=64
=> AC=\(\sqrt{64}=8cm\)
b/ Xét tam giác ABC và tam giác ADC có:
AC chung
góc BAC=DAC=90 độ
AD=AB(gt)
=> Tam giác ABC=tam giác ADC(c-g-c)
Gọi I là giao điểm của phân giác góc B và C
Xét tam giác HAC vuông tại H và tam giác ABC vuông tại A có góc C chung => góc HAC = góc ABC
Ta có: góc ADC = góc DAB + góc DBA = góc DAH + góc HAC ( vì góc DAB = DAH ; góc HAC=DBA)
=>góc ADC= góc DAH + góc HAC = góc DAC
=> tam giác CAD cân tại C => CA=CD
tam giác CID = tam giác CIA (c.g.c) => IA = ID (1)
CM tương tự, ta có IA = IE (2)
Từ (1) và (2) suy ra IA = IE = ID => I là giao điểm 3 đường trung trực của tam giác ADE
=> đpcm
mình làm được 2 câu thôi, xin lỗi nhé :), hình bạn tự vẽ nhá
câu a
tam giác dba à tam giác dbn có
góc dab = góc dnb = 90 độ
góc abd = góc dbn
chung bd
=> tam giác dba = tam giác dbn (cạnh huyền góc nhọn)
câu b
từ câu a
=> góc adb = góc bdn (góc tương ứng)
có góc mda = góc ndc (đối đỉnh)
=> góc mdb = góc cdb
tam giác mdb và tam giác cdb có
chung bd
góc mbd = góc cbd
gócd mdb = góc cdb
=> tam giác mdb = tam giác cdb (gcg)
=> bm = bc (cạnh tương ứng)
=> tam giác bmc cân tại b (dhnb)
mình ko biết làm câu c, hì hì, xin lỗi nhé :)
chúc may mắn
ΔBDE vuông tại D
gọi F là trung điểm của BE
⇒DF = \(\dfrac{1}{2}\) BE =BF
ΔBDF có BF = FD → ΔBDF cân tại F
→\(\widehat{B}\)\(_1\) = \(\widehat{D}\)\(_2\)
lại có \(\widehat{B}\)\(_1\)= \(\widehat{B}\)\(_2\)
⇒\(\widehat{B}\)\(_2\) = \(\widehat{D}\)\(_2\)
mà 2 góc này ở vị trí so le trong ➜ AB // DF
⇒ \(\widehat{B}\) = \(\widehat{F}\)\(_1\) ( 2 góc đồng vị )
mặt khác \(\widehat{B}\) = \(\widehat{C}\)\(_1\) ( ΔABC cân tại A )
⇒ \(\widehat{F}\) \(_1\) = \(\widehat{C}\)\(_1\) ⇒ ΔCDF cân tại D ⇒ DF = DC
mà DF = \(\dfrac{1}{2}\) BE
⇒ DC = \(\dfrac{1}{2}\) BE ⇒ BE = 2DC ( điều phải chứng minh )
cái j z nè
k bít thì đừng tl lung tung
mk báo cáo sai phạm đó
trên tia BC lấy M,N soa cho góc BDN=6O* , BDM=80*
CM được tam giáC BDN=BDA( g-c-g) => AD=DN , góc DNB=DAB=100* => DNC=80* = DMB=> DN=DM =DA=MC(Tự chứng minh) =>đpcm