K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

Gọi I là giao điểm của phân giác góc B và C

Xét tam giác HAC vuông tại H và tam giác ABC vuông tại A có góc C chung => góc HAC = góc ABC

Ta có: góc ADC = góc DAB + góc DBA = góc DAH + góc HAC ( vì góc DAB = DAH ; góc HAC=DBA)

=>góc ADC= góc DAH + góc HAC = góc DAC

=> tam giác CAD cân tại C => CA=CD

tam giác CID = tam giác CIA (c.g.c) => IA = ID (1)

CM tương tự, ta có IA = IE (2)

Từ (1) và (2) suy ra IA = IE = ID => I là giao điểm 3 đường trung trực của tam giác ADE

=> đpcm

6 tháng 6 2017

Hỏi đáp Toán

9 tháng 5 2018

Hỏi đáp Toán

a) \(BC.AH=AB.AC=6.8=48cm^2\) (bằng 2 lần diện tích ABC).

b) HAB và HAC là 2 tam giác vuông có \(\stackrel\frown{HBA}=\widehat{HAC}\) (cùng phụ với \(\widehat{BCA}\)) nên HAB đồng dạng với HAC. Từ đó \(\dfrac{HB}{AH}=\dfrac{AH}{HC}\Rightarrow HB.HC=AH^2\) (đây là hệ thức lượng quen thuộc trong tam giác vuông: đường cao thuộc cạnh huyền bằng trung bình nhân của hai cạnh góc vuông)

c) Áp dụng Pitago ta có \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10cm\). Từ đó \(BE=BCV-CE=10-4=6cm=BA\).

Ta có \(BE^2=BA^2=BH.BC\) (chứ không phải là \(BH.CH\) nhé).

d) Không biết là bạn cần tính gì? Nếu là cần tính diện tích của tam giác CED thì có thể làm như sau:

Áp dụng tính chất phân giác có \(\dfrac{CD}{AD}=\dfrac{BC}{BA}=\dfrac{10}{6}=\dfrac{5}{3}\Rightarrow\dfrac{CD}{CA}=\dfrac{CD}{CD+AD}=\dfrac{5}{3+5}=\dfrac{5}{8}\)

\(\dfrac{dt_{CED}}{dt_{CAB}}=\dfrac{CE}{CB}.\dfrac{CD}{CA}=\dfrac{4}{10}.\dfrac{5}{8}=\dfrac{1}{4}\), do đó \(dt_{CED}=\dfrac{1}{4}dt_{ABC}=\dfrac{1}{4}.\dfrac{1}{2}.6.8=6cm^2\)

12 tháng 8 2019

Tại sao (diện tích tam giác ced / diện tích tam giác cab) =ce/cb*cd/ca

28 tháng 4 2016

hình tự vẽ:

a)Vì BE là tpg của ^ABC(gt)

=>^ABE=^EBH(=^EBC)

Xét tam giác ABE vuông ở A và tam giác HBE vuông ở H có:

BE:cạnh chung

^ABE=^EBH(cmt)

=>tam giác ABE=tam giác HBE(ch-gn)

b)Vì tam giác ABE=tam giác HBE(cmt)

=>AB=HB(cặp cạnh t.ư)

Xét tam giác ABH có:AB=HB(cmt)

=>tam giác ABH cân ở B(DHNB0

Xét tam giác ABH cân ở B có:AE là tpg của ^ABH(vì AE là tpg của ^ABC)

=>BE là đg trung trực của AH (t/c tam giác cân)

c)Vì tam giác ABE=tam giác HBE(cmt)

=>AE=HE(cặp cạnh t.ư)

Ta có:EC>EH (trong tam giác vuông,cạnh huyền là cạnh lớn nhất)

Mà AE=HE(cmt)

=>EC>AE

16 tháng 1 2017

làm bài rất tốt ! vuithanghoaokhahayeuyeu

19 tháng 4 2017

a) Thấy 52=32+42 hay BC2=AB2+AC2

\(\Rightarrow\Delta ABC\) vuông tại A

b)Hình thì chắc bạn tự vẽ được nhaleuleuleuleuleuleu

Xét 2\(\Delta ABH\)\(\Delta DBH\) có:

AB=DB

\(\widehat{BAH}=\widehat{BDH}\)

BH chung

\(\Rightarrow\Delta ABH=\Delta DBH\left(ch-cgv\right)\)

\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)

\(\Rightarrow\)BH là tia phân giác \(\widehat{ABC}\)

c)tam giác ABC đã có các cạnh có độ dài khác nhau nên tam giác ABC ko cân được đâu chị

19 tháng 4 2017

a) Ta có :

-BC2=52=25(1)

-AB2+AC2=32+42=25(2)

-Từ (1)và(2)suy ra BC2=AB2+AC2

-do đó tam giác ABC vuông tại A(áp dụng định lý Py-ta-go đảo)

-vậy tam giác ABC là tam giác vuông .

b)Xét \(\Delta\) ABH(vuông tại A) và \(\Delta\) DBH(vuông tại D) có

-BH là cạnh huyền chung

-AB=BD(gt)

-Do đó:\(\Delta\) ABH=\(\Delta\) DBH(cạnh huyền-cạnh góc vuông)

\(\Rightarrow\)Góc ABH =Góc DBH(hai góc tương ứng)

Vậy BH là tia phân giác của góc ABC

a: Ta có: ΔABC cân tại A

mà AI là đường phân giác

nên AI là đường cao

b: Ta có: ΔABC cân tại A

mà AI là đường cao

nên I là trung điểm của BC

Xét ΔABC có

AI là đường trung tuyến

BD là đường trung tuyến

AI cắt BD tại M

Do đó: M là trọng tâm của ΔABC

c: BM=CM=BC/2=3(cm)

Xét ΔABM vuông tại M có

\(AB^2=AM^2+MB^2\)

hay AM=4(cm)

16 tháng 2 2016

A B C H D

Xét \(\Delta AHB\) và \(\Delta DHB\):

-AH=DH (giả thiết)

- Góc AHB = góc DHB = 90 o

-Chung cạnh HB

\(\Rightarrow\Delta AHB=\Delta DHB\)(c.g.c)

\(\Rightarrow\)Góc ABH = góc DBH ( 2 góc tương ứng)

Do đó BH hay BC là phân giác của góc ABD

Xét \(\Delta AHC\) và \(\Delta DHC\):

- AH= DH ( giả thiết)

- Góc AHC = góc DHC = 90 o

-Chung cạnh HC

\(\Rightarrow\Delta AHC=\Delta DHC\)(c.g.c)

\(\Rightarrow\) Góc ACH = góc DCH ( 2 góc tương ứng)

Do đó CH hay CB là tia phân giác của góc ACD.

a: Xét ΔADE có

AB/BD=AC/CE

nên DE//BC

b: Xét ΔDBM vuông tại M và ΔECN vuông tại N có 

DB=EC

\(\widehat{DBM}=\widehat{ECN}\)

Do đó: ΔDBM=ΔECN

Suy ra: BM=CN

c: Xét ΔABM và ΔACN có 

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

DO đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A