Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: IN//EM
=>NI/ME=BN/BM
=>NI/MF=BN/CM
=>NI/BN=MF/CM
FM//NK
=>MF/NK=CM/CN
=>MF/CM=NK/CN
=>NK/CN=NI/BN=(NI+NK)/BC ko đổi
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: IN//EM
=>NI/ME=BN/BM
=>NI/MF=BN/CM
=>NI/BN=MF/CM
FM//NK
=>MF/NK=CM/CN
=>MF/CM=NK/CN
=>NK/CN=NI/BN=(NI+NK)/BC ko đổi
a/
Ta có ME vg AC và FH vg AC => ME//FH
Ta có EH vg BH và MF vg BH => MF//EH
=> Tứ giác MFHE là hình bình hành. Hơn nữa ^MFH=90 => MFHE là hình chữ nhật => ME=FH (cạnh đối hcn)
b/
Ta có MF//EH (cm ở trên) => ^BMF=^BCA (góc đồng vị)
Mà ^BCA=^ABC (do tg ABC cân tại A)
=> ^ABC=^BMF
Xét hai tam giác vuông DBM và tg vuông FBM có
^ABC=^BMF
Cạnh huyền BM chung
=> tg DBM=tg FBM (Hai tg vuông có cạnh huyền và 1 góc nhọn tương ứng bằng nhau) => MD=BF
c/
Ta có ME=HF và MD=BF
Mà BF+HF=BH không đổi => MD+ME=BH không đổi
Kẻ CN _I_ AB
mà ME _I_ AB (gt)
=> CN // ME
Kẻ MP _I_ CN
mà EN _I_ CN
=> MP // EN
Xét tam giác MEN và tam giác NPM có:
EMN = PNM (2 góc so le trong, ME // NP)
MN chung
MNE = NMP (2 góc so le trong, MP // EN)
=> Tam giác MEN = Tam giác NPM (g.c.g)
ABC = PMC (2 góc đồng vị, MP // EN)
ABC = FCM (tam giác ABC cân tại A)
=> PMC = FCM
Xét tam giác PMC vuông tại P và tam giác FCM vuông tại F có:
MC chung
PMC = FCM (chứng minh trên)
=> Tam giác PMC = Tam giác FCM (cạnh huyền - góc nhọn)
=> PC = FM (2 cạnh tương ứng)
mà ME = NP (Tam giác MEN = Tam giác NPM)
=> ME + FM = NP + PC = NC
mà NC không thay đổi
=> ME + FM không thay đổi (đpcm)